首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyesters constitute an important class of materials for in vivo biomedical applications. Poly(?‐caprolactone) (PCL) is a hydrophobic biodegradable polyester which is employed to a lesser extent in drug delivery applications due to its rather limited range of physicochemical characteristics. Here, we present a new paradigm for the synthesis of functionalized PCL via copolymerization of caprolactone with α,ω‐epoxy esters. Ethyl 2‐methyl‐4‐pentenoate oxide was used as a monomer which was copolymerized with ?‐caprolactone to yield random copolymers of poly(?‐caprolactone‐co‐ethyl‐2‐methyl‐4‐pentenoate oxide). The reaction conditions were optimized to generate functionalization greater than 25%. The use of ester‐epoxides favors a statistical and uniform distribution of monomer along the polymer backbone, which while preserving some of the key properties of PCL such as glass transition that is below room temperature, allows the tailoring of the melting behavior of PCL. The strategy presented herein opens up new avenues for engineering PCL properties for biomedical applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3375–3382  相似文献   

2.
聚乳酸及其共聚物的合成和在生物医学上的应用   总被引:80,自引:0,他引:80  
对近20年来聚乳酸及其共聚物的合成,聚合机理以及在药物控制释放,骨科固定及组织修复,手术缝合线等领域中的应用作了广泛而深入的总结和评述,预示了聚合物材料的制备及在生物医学领域中的研究开发前景。  相似文献   

3.
The block copolymers of chitosan with D,L-lactide are synthesized under UV irradiation of the homogeneous solution of the corresponding homopolymers with the yield of the main product being 96 wt %. The polyblock structure of copolymer chains, in which the size of polylactide blocks is varied in the range of (2.9–22.0) × 103 depending on the synthesis conditions, is demonstrated. The incorporation of polylactide blocks into the structure of chitosan leads to development of the material structure close to the structure of polylactide. The films of the block copolymers containing 16 wt % polylactide and having a molecular mass of its blocks of 22.0 × 103 have increased values of breaking stress (47 MPa) and ultimate strain (20%) compared to chitosan (24 MPa and 1.9%, respectively). The obtained block copolymers possess bactericidal properties.  相似文献   

4.
In this study, biodegradable shape‐memory polymers—polylactide‐co‐poly(glycolide‐co‐caprolactone) multiblock (PLAGC) copolymers—were synthesized by the coupling reaction of both macrodiols of polylactide (PLLA‐diol) and poly(glycolide‐co‐caprolactone) (PGC‐diol) in the presence of 1,6‐hexanediisocyanate as coupling agent. The copolymers formed were found to be thermoplastic and easily soluble in common solvents. The compositions of the copolymers were determined by 1H‐NMR and the influences of segment lengths and contents of both macrodiols on the properties of the PLAGC copolymers were investigated. It was found that the copolymers had adjustable mechanical properties which depended on contents and segment lengths of both macrodiols. The copolymers showed such good shape‐memory properties that the strain fixity rate (Rf) and the strain recovery rate (Rr) exceed 90%. By means of adjusting the compositions of the copolymers, PLAGC copolymers with transition temperatures around 45°C could be obtained. The degradation rate determination showed that the PLAGC copolymers have fast degradation rates, the mechanical strengths of the PLAGC copolymers would be completely lost within 1–2 months depending on molecular weights and contents of the both segments of PLLA and PGC. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Polylactide, which is a biodegradable and bio‐absorbable polymer having low immunogenicity and good biocompatibility, has been mainly studied for biomedical applications. Branched polymers have different rheological and mechanical properties compared with their linear counterparts owing to their molecular architectures. We synthesized novel biodegradable polylactide having a branched structure composed of metabolically degradable and/or absorbable materials only. The branched polylactide was obtained from a one‐pot copolymerization of L ‐lactide using metabolic intermediate dl ‐mevalonolactone as a bifunctional comonomer having both lactone ring and pendant hydroxy group. The glass transition point, melting point and crystallinity of the branched polylactide are lower than those of linear polylactide.  相似文献   

6.
Functional polymers are widely employed in various areas of biomedical sciences. In order to tailor them for desired applications, facile and efficient functionalization of these polymeric materials under mild and benign conditions is important. Polymers containing reactive maleimide groups can be employed for such applications since they provide an excellent handle for conjugation of thiol‐ and diene‐containing molecules and biomolecules. Until recently, fabrication of maleimide containing polymeric materials has been challenging due to the interference from the highly reactive double bond. A Diels‐Alder/retro Diels‐Alder reaction sequence based strategy to transiently mask the maleimide group provides access to such polymeric materials. In this personal account, we summarize contributions from our group towards the fabrication and functionalization of maleimide‐containing polymeric materials over the past decade.  相似文献   

7.
This paper deals with a new application of diblock methoxy polyethylene glycol‐polylactide block copolymers, a class of synthetic biomaterials largely studied in the pharmaceutical and biomedical fields owing to their favorable properties such as biocompatibility, biodegradability, low immunogenicity, and good mechanical properties. In this work, these materials were evaluated as additives for gastro‐soluble pharmaceutical coating aimed to reduce film stiffness and water permeability. Two copolymers with different polylactide chain lengths were synthesized and characterized in term of molecular weight and solid‐state properties. A series of free films with different hypromellose/copolymers ratio were prepared and characterized in terms of appearance, components miscibility, plasticity, and water vapor permeability. The obtained results demonstrate that copolymers effectively influence hypromellose film properties according to their concentration and molecular weight. Specifically, the addition of the copolymer with a molecular weight of 6.5 kDa in a ratio hypromellose:polymer 5:1, allowed to obtain films with good appearance, improved plasticization, and water permeability properties. For higher molecular weight, copolymer or different ratios was not possible to observe the improvement of all the properties at the same time. The results also make possible to define the critical features to improve in order to use block copolymers as additive in hypromellose film coating. The availability of new water‐soluble additives able to work as plasticizer and moisture sealer in polymeric films represents an important progress not only in the field of pharmaceutical coating but also in that of food coatings, as for example in the formulation of edible films. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Formation of a stereocomplex from polylactide copolymers can be tuned by changing the size and the chain topology of the second block in the copolymer. In particular, the use of a dendritic instead of linear architecture is expected to destabilize the cocrystallisation of polylactide blocks. With this idea in mind, dendritic‐linear block copolymers were synthesized by ring‐opening polymerization (ROP) of lactides using benzyl alcohol dendrons of generation 1–3 as macroinitiators and stannous octoate as catalyst. Polymers with controlled and narrow molar mass distribution were obtained. The MALDI‐TOF mass spectra of these dendritic‐linear block copolymers show well‐resolved signals. Remarkably, 10% or less of odd‐membered polymers are present, indicating that ester‐exchange reactions which occur classically parallel to the polymerization process, were in these conditions, very limited. Thermal analysis of polyenantiomers of generation 1–3 and the corresponding blends were examined. The blend of a pair of enantiomeric dendritic‐linear block copolymers exhibit a higher melting temperature than each copolymer, characteristic for the formation of a stereocomplex. Melting temperatures are strongly dependent on the dendron generation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6782–6789, 2006  相似文献   

9.
The use of aliphatic polyesters for biomedical applications is limited by the lack of functionality of their backbones. The aim of the following study was to develop a novel elastic scaffold material containing functional groups to be used for future derivatization to tether peptide ligands to support cell adhesion, migration, and differentiation. The elastomer was based on three‐arm star copolymers composed of ε‐caprolactone and a functionalized ε‐caprolactone, 2‐oxepane‐1,5‐dione, and end‐terminated with acrylate groups. The elastomer thus contains a ketone and two approaches were examined for obtaining a photocrosslinkable elastomer containing functional groups: crosslinking followed by ketone reduction using sodium borohydride to generate pendant hydroxyl groups, and reaction of the ketone with hydrazines. Reduction of the ketone lead to degradation of the elastomer through transesterification and ethanolate mediated cleavage of the polymer backbone. Reaction with hydrazines did not degrade the polymer and resulted in efficient functionalization of the elastomer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8191–8199, 2008  相似文献   

10.
Methacrylate‐based hydrogels, such as homo‐ and copolymers of 2‐hydroxyethyl methacrylate (HEMA), have demonstrated significant potential for use in biomedical applications. However, many of these hydrogels tend to resist cell attachment and growth at their surfaces, which can be detrimental for certain applications. In this article, glycidyl methacrylate (GMA) was copolymerized with HEMA to generate gels functionalized with epoxide groups. The epoxides were then functionalized by two sequential click reactions, namely, nucleophilic ring opening of epoxides with sodium azide and then coupling of small molecules and peptides via Huisgen's copper catalyzed 1,3‐dipolar cycloaddition of azides with alkynes. Using this strategy it was possible to control the degree of functionalization by controlling the feed ratio of monomers during polymerization. In vitro cell culture of human retinal pigment epithelial cell line (ARPE‐19) with the hydrogels showed improved cell adhesion, growth and proliferation for hydrogels that were functionalized with a peptide containing the RGD sequence. In addition, the cell attachment progressively decreased with increasing densities of the RGD containing peptide. In summary, a facile methodology has been presented that gives rise to hydrogels with controlled degrees of functionality, such that the cell response is directly related to the levels and nature of that functionality. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1781–1789  相似文献   

11.
Li T  Han R  Wang M  Liu C  Jing X  Huang Y 《Macromolecular bioscience》2011,11(11):1570-1578
PEG-PLA copolymers with dumbbell- and Y-shaped structures are prepared. They can self-assemble from nanoparticles to micro-sized fusiform micellar particles in aqueous solution. In particular the micelles formed by the (PLA)2-PEG-(PLA)2 particles show a better drug loading capacity and encapsulation efficiency than those formed by linear MPEG-PLA. In vitro studies show that the particles formed by Y-shaped copolymers show a particularly quick drug release. The copolymers have good biocompatibility with low cytotoxicity. These unique self-assembled systems thus have many possible biomedical applications, such as a sustained delivery of high-dosed water insoluble drugs, quick effective drugs for trauma, controlled delivery of the oral-administration drugs, and so forth.  相似文献   

12.
There is a growing need for biocompatible click reactions in order to prepare multifunctional conjugates, which are valuable molecules for innovative biomedical applications. In this context, we review the recent advances in the implementation of oxime ligation for the synthesis of multivalent or multicomponent systems. The value of these products is emphasized by their use in cell targeting, imaging, synthetic vaccines, and surface modifications.  相似文献   

13.
Fabrication and functionalization of hydrogels from well‐defined dendron‐polymer‐dendron conjugates is accomplished using sequential radical thiol‐ene “click” reactions. The dendron‐polymer conjugates were synthesized using an azide‐alkyne “click” reaction of alkene‐containing polyester dendrons bearing an alkyne group at their focal point with linear poly(ethylene glycol)‐bisazides. Thiol‐ene “click” reaction was used for crosslinking these alkene functionalized dendron‐polymer conjugates using a tetrathiol‐based crosslinker to provide clear and transparent hydrogels. Hydrogels with residual alkene groups at crosslinking sites were obtained by tuning the alkene‐thiol stoichiometry. The residual alkene groups allow efficient postfunctionalization of these hydrogel matrices with thiol‐containing molecules via a subsequent radical thiol‐ene reaction. The photochemical nature of radical thiol‐ene reaction was exploited to fabricate micropatterned hydrogels. Tunability of functionalization of these hydrogels, by varying dendron generation and polymer chain length was demonstrated by conjugation of a thiol‐containing fluorescent dye. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 926–934  相似文献   

14.
In order to tune the surface properties of hydroxyapatite(HA) nanoparticles and prevent them from ag- gregation, an efficient method was proposed to graft chitosan(CS) molecules on the surface of HA via "click" reac- tion. Thermal gravimetric analysis(TGA) shows that CS was successfully grafted on the surface of HA nanoparticles and the grafting amount was about 8.9 g of CS on per hundred grams of HA. The grafted chitosan chains can prevent HA nanoparticles from aggregation and greatly enhance the colloidal stability of HA in water. The 3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay demonstrats that the cytotoxicity of CS modified HA(HA-CS) is negligible and thus HA-CS may find potential application in biomedical fields.  相似文献   

15.
Bacitracin‐conjugated superparamagnetic iron oxide (Fe3O4) nanoparticles were prepared by click chemistry and their antibacterial activity was investigated. After functionalization with hydrophilic and biocompatible poly(acrylic acid), water‐soluble Fe3O4 nanoparticles were obtained. Propargylated Fe3O4 nanoparticles were then synthesized by carbodiimide reaction of propargylamine with the carboxyl groups on the surface of the iron oxide nanoparticles. By further reaction with N3‐bacitracin in a CuI‐catalyzed azide–alkyne cycloaddition, the magnetic Fe3O4 nanoparticles were modified with the peptide bacitracin. The functionalized magnetic nanoparticles were characterized by powder X‐ray diffraction, X‐ray photoelectron spectroscopy, TEM, zeta‐potential analysis, FTIR spectroscopy and vibrating‐sample magnetometry. Cell cytotoxicity tests indicate that bacitracin‐conjugated Fe3O4 nanoparticles show very low cytotoxicity to human fibroblast cells, even at relatively high concentrations. In view of the antibacterial activity of bacitracin, the biofunctionalized Fe3O4 nanoparticles exhibit an antibacterial effect against both Gram‐positive and Gram‐negative organisms, which is even higher than that of bacitracin itself. The enhanced antibacterial activity of the magnetic nanocomposites allows the dosage and the side effects of the antibiotic to be reduced. Due to the antibacterial effect and magnetism, the bacitracin‐functionalized magnetic nanoparticles have potential application in magnetic‐targeting biomedical applications.  相似文献   

16.
Anionic polymerization of isoprene initiated by an alkyl lithium containing a silyl ether protected hydroxyl functionality followed by termination with ethylene oxide gave α,ω‐functionalized polyisoprene with narrow molecular weight distribution and prescribed molecular weight in high yield. Deprotection resulted in α,ω‐hydroxyl polyisoprene (HO‐PI‐OH) that was reacted with triethylaluminium to form the corresponding aluminium alkoxide macroinitiator. The macroinitiator was used for the controlled polymerization of lactide to yield polylactide‐block‐polyisoprene‐block‐polylactide triblock copolymers with narrow molecular weight distributions and free of homopolymer (HO‐PI‐OH) contamination. Microphase separation in these novel triblock copolymers was confirmed by SAXS and DSC.  相似文献   

17.
Summary: A series of new polyisoprene‐block‐polylactide and polystyrene‐block‐polylactide diblock copolymers was prepared by combining the living anionic polymerization of isoprene or styrene, and the stereoselective ring‐opening polymerization of rac‐lactide. Aluminum and yttrium‐based polystyrene or polyisoprene macroinitiators yielded isotactic‐stereoblock and heterotactic‐enriched polylactide segments, respectively. A strong influence of the microstructure of the polylactide block on the aggregation properties in solution and morphological behavior of the solid materials in thin films has been observed.

General strategy used for the preparation of the diblock copolymers, illustrated here for poly(isoprene‐block‐lactide). Poly(styrene‐block‐lactide) copolymers were prepared similarly.  相似文献   


18.
《Mendeleev Communications》2023,33(3):404-407
Ring-opening polymerization of lactide was performed in the presence of 1,8-diazabicyclo[5.4.0]undec-5-ene as an organic catalyst and polyethylene glycol as a hydroxyl-containing macroinitiator. A series of amphiphilic poly(ethylene glycol-block-polylactide) copolymers with a low dispersity (PDI = 1.1), different stereoregularity and length of the polylactide block was obtained. Nanoparticles with a diameter of 20–25 nm were produced from selected polymers and were studied by in vitro cytotoxicity tests.  相似文献   

19.
The synthesis of biohybrid materials with tailored functional properties represents a topic of emerging interest. Combining proteins as natural, macromolecular building blocks, and synthetic polymers opens access to giant brush‐like biopolymers of high structural definition. The properties of these precision polypeptide copolymers can be tailored through various chemical modifications along their polypeptide backbone, which expands the repertoire of known protein‐based materials to address biomedical applications. In this article, the synthetic strategies for the design of precision biopolymers from proteins through amino acid specific conjugation reagents are highlighted and the different functionalization strategies, their characterization, and applications are discussed.  相似文献   

20.
A series of copolymers composed of methoxy poly(ethylene glycol) and a hydrophobic block of poly(ɛ-caprolactone-co-propargyl carbonate) grafted with poly(2-[dimethylamino]ethyl methacrylate) was synthesized by combining ring opening polymerization, azide-alkyne click reaction, and atom transfer radical polymerization (ATRP). Well-defined copolymers with a target composition and a tailored structure were achieved via the grafting from approach by using a single catalytic system for both click reaction and ATRP. Kinetic studies demonstrated the controlled/living character of the employed polymerization methods. The thermal properties and self-assembly in aqueous medium of the graft copolymers were dependent on their composition. The resulting polymeric materials showed low cytotoxicity toward L929 cells, demonstrating their potential for biomedical applications. This type of materials containing cationic side chains tethered to biocompatible and biodegradable segments could be the basis for promising candidates as drug and gene delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号