首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ultrasensitive microRNA assay was developed with one-step loop-mediated isothermal amplification (LAMP) initiated by the target microRNA.  相似文献   

2.
Isothermal exponential amplification techniques, such as strand‐displacement amplification (SDA), rolling circle amplification (RCA), loop‐mediated isothermal amplification (LAMP), nucleic acid sequence based amplification (NASBA), helicase‐dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on‐site, point‐of‐care, and in situ assay applications. These amplification techniques eliminate the need for temperature cycling, as required for the polymerase chain reaction (PCR), while achieving comparable amplification yields. We highlight here recent advances in the exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. The incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables the highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from nonspecific template interactions, must be addressed to further improve isothermal and exponential amplification techniques.  相似文献   

3.
In 2003 the European Commission introduced a 0.9 % threshold for food and feed products containing genetically modified organism (GMO)-derived components. For commodities containing GMO contents higher than this threshold, labelling is mandatory. To provide a DNA-based rapid and simple detection method suitable for high-throughput screening of GMOs, several isothermal amplification approaches for the 35S promoter were tested: strand displacement amplification, nicking-enzyme amplification reaction, rolling circle amplification, loop-mediated isothermal amplification (LAMP) and helicase-dependent amplification (HDA). The assays developed were tested for specificity in order to distinguish between samples containing genetically modified (GM) maize and non-GM maize. For those assays capable of this discrimination, tests were performed to determine the lower limit of detection. A false-negative rate was determined to rule out whether GMO-positive samples were incorrectly classified as GMO-negative. A robustness test was performed to show reliable detection independent from the instrument used for amplification. The analysis of three GM maize lines showed that only LAMP and HDA were able to differentiate between the GMOs MON810, NK603, and Bt11 and non-GM maize. Furthermore, with the HDA assay it was possible to realize a detection limit as low as 0.5 %. A false-negative rate of only 5 % for 1 % GM maize for all three maize lines shows that HDA has the potential to be used as an alternative strategy for the detection of transgenic maize. All results obtained with the LAMP and HDA assays were compared with the results obtained with a previously reported real-time PCR assay for the 35S promoter in transgenic maize. This study presents two new screening assays for detection of the 35S promoter in transgenic maize by applying the isothermal amplification approaches HDA and LAMP.  相似文献   

4.
We report here an ultrasensitive DNA detection approach which combines Au NPs enhanced electrochemiluminescence (ECL) of the CdS nanocrystal (NC) film with isothermal circular amplification reaction of polymerase and nicking endonuclease (NEase). By the double-signal amplification, this approach could sensitively respond down to 5 aM DNA.  相似文献   

5.
Miniaturized isothermal nucleic acid amplification, a review   总被引:1,自引:0,他引:1  
Asiello PJ  Baeumner AJ 《Lab on a chip》2011,11(8):1420-1430
Micro-Total Analysis Systems (μTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.  相似文献   

6.

Loop-mediated isothermal amplification (LAMP) has been developed as a versatile method for nucleic acid analysis in many applications. However, non-specific LAMP leading to false-positive outcomes has been observed frequently. To solve this problem, we selected six molecules as the additives for evaluating their effects on the improvement of the LAMP specificity. Experimental results show that bovine serum albumin (BSA) and DL-dithiothreitol (DTT) have negative effects on the LAMP specificity; dimethyl sulfoxide (DMSO), tetramethylene sulfoxide (TMSO), and glycerol could inhibit the non-specific LAMP moderately. Surprisingly, pullulan shows an ability to inhibit the non-specific amplification of LAMP significantly without affecting the sample amplification of LAMP, and this inhibitory effect is concentration dependent. Thus, pullulan could be considered as the most promising additive to improve the amplification specificity in the LAMP-based detection and analysis of nucleic acids.

  相似文献   

7.
In this study, we for the first time presented an efficient, accurate, rapid, simple and ultrasensitive detection system for small molecule ochratoxin A (OTA) by using the integration of loop-mediated isothermal amplification (LAMP) technique and subsequently direct readout of LAMP amplicons with a signal-on electrochemiluminescent (ECL) system. Firstly, the dsDNA composed by OTA aptamer and its capture DNA were immobilized on the electrode. After the target recognition, the OTA aptamer bond with target OTA and subsequently left off the electrode, which effectively decreased the immobilization amount of OTA aptamer on electrode. Then, the remaining OTA aptamers on the electrode served as inner primer to initiate the LAMP reaction. Interestingly, the LAMP amplification was detected by monitoring the intercalation of DNA-binding Ru(phen)32+ ECL indictors into newly formed amplicons with a set of integrated electrodes. The ECL indictor Ru(phen)32+ binding to amplicons caused the reduction of the ECL intensity due to the slow diffusion of Ru(phen)32+–amplicons complex to the electrode surface. Therefore, the presence of more OTA was expected to lead to the release of more OTA aptamer, which meant less OTA aptamer remained on electrode for producing LAMP amplicons, resulting in less Ru(phen)32+ interlaced into the formed amplicons within a fixed Ru(phen)32+ amount with an obviously increased ECL signal input. As a result, a detection limit as low as 10 fM for OTA was achieved. The aptasensor also has good reproducibility and stability.  相似文献   

8.
Considering the great significance of microRNAs (miRNAs) in cancer detection and typing, the development of sensitive, specific, quantitative, and low-cost methods for the assay of expression levels of miRNAs is desirable. We describe a highly efficient amplification platform for ultrasensitive analysis of miRNA (taking let-7a miRNA as a model analyte) based on a dumbbell probe-mediated cascade isothermal amplification (DP-CIA) strategy. The method relies on the circularization of dumbbell probe by binding target miRNA, followed by rolling circle amplification (RCA) reaction and an autonomous DNA machine performed by nicking/polymerization/displacement cycles that continuously produces single-stranded G-quadruplex to assemble with hemin to generate a color signal. In terms of the high sensitivity (as low as 1 zmol), wide dynamic range (covering 9 orders of magnitude), good specificity (even single-base difference) and easy operation (one probe and three enzymes), the proposed label-free assay is successfully applied to direct detection of let-7a miRNA in real sample (total RNA extracted from human lung tissue), demonstrating an attractive alternative for miRNA analysis for gene expression profiling and molecular diagnostics, particularly for early cancer diagnosis.  相似文献   

9.
Allen PB  Arshad SA  Li B  Chen X  Ellington AD 《Lab on a chip》2012,12(16):2951-2958
This article describes the use of non-enzymatic nucleic acid circuits based on strand exchange reactions to detect target sequences on a paperfluidic platform. The DNA circuits that were implemented include a non-enzymatic amplifier and transduction to a fluorescent reporter; these yield an order of magnitude improvement in detection of an input nucleic acid signal. To further improve signal amplification and detection, we integrated the enzyme-free amplifier with loop-mediated isothermal amplification (LAMP). By bridging the gap between the low concentrations of LAMP amplicons and the limits of fluorescence detection, the non-enzymatic amplifier allowed us to detect as few as 1200 input templates in a paperfluidic format.  相似文献   

10.
We describe here a novel strategy for recording the reaction process of loop‐mediated isothermal amplification (LAMP) by monitoring the voltammetric response of 2′‐deoxyguanosine 5′‐triphosphate (dGTP). Unlike the other three kinds of reactive substrates for DNA synthesis in LAMP reaction, dGTP exhibits sensitive voltammetric response at the carbon nanotube array electrode. When the LAMP reaction occurs, the concentration of dGTP decreases accordingly, bringing forth the decrease of the anodic peak current (ipa). In inversion, the decrease of the ipa of dGTP was used to characterize the reaction process of LAMP. The relationships among the LAMP reaction time, the initial quantity of template DNA and the value change of the ipa were studied. The results indicate that the protocol integrated LAMP and voltammetric techniques can be used for not only qualitative gene discrimination but also quantitative gene assay in a wide range. The malB gene extracted from common strains of Escherichia coli cells was tested as a model. The detecting results of LAMPs obtained by voltammetric method were in good agreement with those by optical‐based methods (gel electrophoresis and fluorescent dye).  相似文献   

11.
A novel G-quadruplex DNAzyme-driven chemiluminescence (CL) imaging method was developed for ultrasensitive and specific detection of miRNA based on the cascade exponential isothermal amplification reaction (EXPAR) machinery. A structurally tailored hairpin probe switch was designed to selectively recognise miRNA and form hybridisation products to trigger polymerase and nicking enzyme machinery, resulting in the generation of product I, which was complementary to a region of the functional linear template. Then, the response of the functional linear template to the generated product I further activated the exponential isothermal amplification machinery, leading to synthesis of numerous horseradish peroxidase mimicking DNAzyme units for CL signal transduction. The amplification paradigm generated a linear response from 10 fM to 100 pM, with a low detection limit of 2.91 fM, and enabled discrimination of target miRNA from a single-base mismatched target. The developed biosensing platform demonstrated the advantages of isothermal, homogeneous, visual detection for miRNA assays, offering a promising tool for clinical diagnosis.  相似文献   

12.
Point-of-care (POC) genetic diagnostics critically depends on miniaturization and integration of sample processing, nucleic acid amplification, and detection systems. Polymerase chain reaction (PCR) assays have extensively applied for the diagnosis of genetic markers of disease. Microfluidic chips for microPCR with different materials and designs have been reported. Temperature cycling systems with varying thermal masses and conductivities, thermal cycling times, flow-rates, and cross-sectional areas, have also been developed to reduce the nucleic acid amplification time. Similarly, isothermal amplification techniques (e.g., loop-mediated isothermal amplification or LAMP), which are still are emerging, have a better potential as an alternative to PCR for POC diagnostics. Isothermal amplification techniques have: (i) moderate incubation temperature leading to simplified heating and low power consumption, (ii) yield high amount of amplification products, which can be detected either visually or by simple detectors, (iii) allow direct genetic amplification from bacterial cells due to the superior tolerance to substances that typically inhibit PCR, (iv) have high specificity, and sensitivity, and (v) result in rapid detection often within 10–20 min. The aim of this review is to provide a better understanding of the advantages and limitations of microPCR and microLAMP systems for rapid and POC diagnostics.  相似文献   

13.
Since 2005, celery and celery products have to be labeled according to Directive 2003/89/EC due to their allergenic potential. In order to provide a DNA-based, rapid and simple detection method suitable for high-throughput analysis, a loop-mediated isothermal amplification (LAMP) assay for the detection of celery (Apium graveolens) was developed. The assay was tested for specificity for celery since closely related species also hold food relevance. The limit of detection (LOD) for spiked food samples was found to be as low as 7.8 mg of dry celery powder per kilogram. An evaluation of different amplification and detection platforms was performed to show reliable detection independent from the instrument used for amplification (thermal cycler or heating block) and detection mechanisms (real-time fluorescence detection, agarose gel electrophoresis or nucleic acid staining). The analysis of 10 commercial food samples representing diverse and complex food matrices, and a false-negative rate of 0 % for approximately 24 target copies or 0.08 ng celery DNA for three selected food matrices show that LAMP has the potential to be used as an alternative strategy for the detection of allergenic celery. The performance of the developed LAMP assay turned out to be equal or superior to the best available PCR assay for the detection of celery in food products.  相似文献   

14.
We realized the user-friendly and field-based point-of-care detection on a self-made portable device with the aid of personal glucose meter (PGM) for single nucleotide polymorphisms (SNPs) of melanoma and colon cancer marker BRAF V600E with good sensitivity and selectivity by integrating the loop-mediated isothermal amplification (LAMP) reaction and the strand exchange signal transduction. The device is equipped with a rotating magnetic field as well as a heating element, under which the pre-added magnetic nanochains (MNCs) help to homogenize the reaction mixture and overcome the low diffusion efficacy of the reactant and the required temperature for different reactions can be met.  相似文献   

15.
An ultrasensitive surface-enhanced Raman scattering (SERS) detection system based on DNA machine isothermal amplification is reported to detect a specific DNA sequence for the first time and was successfully applied to detect cancer cells.  相似文献   

16.
We described here a novel strategy for discriminating target gene by integrating loop‐mediated isothermal amplification (LAMP) and differential pulse voltammetry (DPV). After a successful LAMP reaction, the anodic peak current (ipa) of the free 2′‐deoxyguanosine 5′‐triphosphate (dGTP) decreased remarkably at a carbon nanotubes array working electrode, owing to the consumption of free dGTP as one of reactive substrates. Thus, the change of current response was used to characterize the result of LAMP reaction. And hence the presence of the target gene in template DNA could be discriminated easily. The malB gene extracted from Escherichia coli cells was tested as a model. After the reaction for 30 min, the LAMP mix was scanned directly. Then the information of the target gene in 0.8 picogram template DNA was obtained accurately. The result was in good accordance with that obtained with optical‐based methods (gel electrophoresis and fluorescent dye). The new strategy has the advantages of being very simple to perform, rapid response, elimination of post‐amplification processing, avoidance of auxiliary reagents and low cost (there was almost no cost for the detection step). Therefore, it was quite promising for use in miniaturized devices and in the development of point‐of‐care applications.  相似文献   

17.
Liu C  Mauk MG  Hart R  Qiu X  Bau HH 《Lab on a chip》2011,11(16):2686-2692
A disposable, water-activated, self-heating, easy-to-use, polymeric cartridge for isothermal nucleic acid amplification and visual fluorescent detection of the amplification products is described. The device is self-contained and does not require any special instruments to operate. The cartridge integrates chemical, water-triggered, exothermic heating with temperature regulation facilitated with a phase-change material (PCM) and isothermal nucleic acid amplification. The water flows into the exothermic reactor by wicking through a porous paper. The porous paper's characteristics control the rate of water supply, which in turn controls the rate of exothermic reaction. The PCM material enables the cartridge to maintain a desired temperature independent of ambient temperatures in the range between 20 °C and 40 °C. The utility of the cartridge is demonstrated by amplifying and detecting Escherichia coli DNA with loop mediated isothermal amplification (LAMP). The device can detect consistently as few as 10 target molecules in the sample. With proper modifications, the cartridge also can work with other isothermal nucleic acid amplification technologies for detecting nucleic acids associated with various pathogens borne in blood, saliva, urine, and other body fluids as well as in water and food. The device is suitable for use at home, in the field, and in poor-resource settings, where access to sophisticated laboratories is impractical, unaffordable, or nonexistent.  相似文献   

18.
Techniques that combine nucleic acid amplification with an antibody-based assay can dramatically increase the sensitivity of conventional immunoassays. This review summarizes the methodology and applications of one such protein detection technique that has been used for the past 23 years—the immuno-polymerase chain reaction (usually referred to as immuno-PCR or IPCR). The key component of an immuno-PCR is a DNA–antibody conjugate that serves as a bridge to link the solid-phase immunoreaction with nucleic acid amplification. The efficiency of immuno-PCR enables a 10- to 109-fold increase in detection sensitivity compared with that of ELISA. Advancements in immuno-PCR have included improvements of production of the DNA–antibody conjugate, assay formats, and readout methods. As an ultrasensitive protein assay, immuno-PCR has a broad range of applications in immunological research and clinical diagnostics.  相似文献   

19.
This work presents a promising clinical molecular diagnostics for early stage lung cancer. This novel diagnostic method utilized the loop-mediated isothermal amplification (LAMP), microfluidic chips and a confocal optical detector with a non-linear fluorescent filter processor. An isothermal amplification based microfluidic chip for the early diagnostics of lung cancer was developed and a confocal optical detector was improved by a novel real-time fluorescent filter to sensitively monitor the DNA amplification procedure with high signal to noise ratio and fluorescence collecting ability. Experiment showed that a rapid diagnostic of lung cancer by detecting the existence of the CEA mRNA could be performed in only 5 μL of reaction assay in less than 45 min. While the traditional in-tube RT-PCR set consumed more than 25 μL of the assay and took more than 90 min.  相似文献   

20.
Wang CH  Lien KY  Wu JJ  Lee GB 《Lab on a chip》2011,11(8):1521-1531
This study reports a new diagnostic assay for the rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) by combing nucleic acid extraction and isothermal amplification of target nucleic acids in a magnetic bead-based microfluidic system. By using specific probe-conjugated magnetic beads, the target deoxyribonucleic acid (DNA) of the MRSA can be specifically recognized and hybridized onto the surface of the magnetic beads which are then mixed with clinical sample lysates. This is followed by purifying and concentrating the target DNA from the clinical sample lysates by applying a magnetic field. Nucleic acid amplification of the target genes can then be performed by the use of a loop-mediated isothermal amplification (LAMP) process via the incorporation of a built-in micro temperature control module, followed by analyzing the optical density (OD) of the LAMP amplicons using a spectrophotometer. Significantly, experimental results show that the limit of detection (LOD) for MRSA in the clinical samples is approximately 10 fg μL(-1) by performing this diagnostic assay in the magnetic bead-based microfluidic system. In addition, the entire diagnostic protocol, from bio-sample pre-treatment to optical detection, can be automatically completed within 60 min. Consequently, this miniature diagnostic assay may become a powerful tool for the rapid purification and detection of MRSA and a potential point-of-care platform for detection of other types of infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号