首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
This review describes voltammetric studies on ion transport from one aqueous phase (W1) to another (W2) across a bilayer lipid membrane (BLM) containing a hydrophobic ion, valinomycin (Val) or gramicidin A (GA). In particular, the ion transport mechanisms are discussed in terms of the distribution of a pair of ions between aqueous and BLM phases. By addition of a small amount of hydrophobic ion into W1 and/or W2 containing a hydrophilic salt as a supporting electrolyte, the hydrophobic ion was distributed into the BLM with the counter ion to maintain electroneutrality within the BLM phase. It was found that the counter ion was transferred between W1 and W2 across the BLM by applying a membrane potential. Facilitated transport of alkali ions across a BLM containing Val as an ion carrier compound, could be interpreted by considering not only the formation of the alkali metal ion–Val complex but also the distribution of both the objective cation and the counter ion. In the case of addition of GA as a channel-forming compound into the BLM, the facilitated transport of alkali ions across the BLM depended on the ionic species of the counter ions. It was discovered that the influence of the counter ion on the facilitated transport of alkali ions across the BLM could be explained in terms of the hydrophobicity and the ionic radius of the counter ion.  相似文献   

2.
The facilitated ion transport from one aqueous phase, W1, to another, W2, across a bilayer lipid membrane, BLM, containing valinomycin, Val, as an ionophore was investigated by voltammetry. Cyclic voltammograms for the ion transfer were symmetrical about the origin (0 V, 0 A) and the magnitude of the ion transfer current increased with an increase in the absolute value of the applied potential. The magnitude of the ion transfer current at a definite potential in the voltammograms depended on the cation species added to W1 and W2 and was proportional to the concentration of Val in the BLM. The magnitude of the ion transfer current at a definite potential also varied in proportion to the hydrophobicity of the counter anion in W1 and W2. Taking into account the conjugated ion transfers at the W1|BLM and BLM|W2 interfaces, the positive current that flowed from W1 to W2 across the BLM was attributable to both the transfer of the complex-forming cation from W1 to the BLM and the transfer of the anion, which was distributed in the BLM as the counter ion from W2 to W1. The transfer from the BLM to W1 occurred at the W1|BLM interface and both the transfer of the cation from the BLM to W2 and the transfer of the anion from W2 to the BLM at the BLM|W2 interface. The negative current was then attributed to the opposite reaction. The voltammograms were asymmetrical with the origin when the ion components in W1 and W2 were different.  相似文献   

3.
In order to elucidate the role of structural change of lipid membrane bilayer in the mode of action of local anesthetic, we studied the effects of local anesthetics, charged tetracaine and uncharged benzocaine, on ion permeability across various lipid planar bilayers (PC, mixed PC/PS (4/1, mol/mol); mixed PC/PE (1/1, mol/mol); mixed PC/SM (4/1, mol/mol)) under a constant applied voltage. The membrane conductances increased in the order of PC  PC/PS ≤ PC/SM  PC/PE. When the constant voltage of −100 or −70 mV was applied through the lipid bilayer membranes in the presence of positively charged tetracaine, the fluctuating current pulses with the large amplitude generated, but not appeared in the absence of tetracaine. The addition of uncharged benzocaine generated the fluctuating currents with the small amplitude. Both charged tetracaine and uncharged benzocaine facilitated electrophoretically the transport of small ions such as KCl in the buffer solution through the fluctuating pores in the lipid bilayer membranes formed by interaction with the local anesthetic under the negative applied membrane potential. The current pulses also contained actual transport of charged tetracaine together with the transport of the small ions. The amplitude and the duration time of the electrical current generated by adding the local anesthetics were dependent on the type of the lipid, the applied voltage and its voltage polarity.  相似文献   

4.
Surface enhanced infrared absorption spectroscopy (SEIRAS) has been employed to monitor the orientated assembly of a strep-tagged membrane protein on the gold surface via a streptavidin/biotin interlayer. The high surface sensitivity of SEIRAS allows for tracking the individual assembling steps on the molecular level. The sequence of surface modification steps comprises: (i) cross-linking of biotin to the self-assembled monolayer of cysteamine along the gold surface; (ii) adsorption of streptavidin to and desorption from the biotin layer; and (iii) adsorption of the strep-tagged membrane protein ecgltP (glutamate transporter of E. coli) on the streptavidin/biotin layer. The analysis of the SEIRA spectra reveals that the biotin layer undergoes a phase transition from an isotropic orientation to a densely packed layer during coupling to the cysteamine monolayer. Formation of the densely packed layer weakens the interaction between streptavidin and the biotin layer but yields a binding specificity of 80%. The specificity of strep-tagged ecgltP to the streptavidin layer is with 60% only modest. Nevertheless, the streptavidin/biotin interlayer reveals a higher regeneration propensity than the His-tag/Ni-NTA interlayer.  相似文献   

5.
This article reports a new method to quantify the water absorption kinetics and the mass transfer in a polymer solution by using near‐infrared (NIR) spectroscopy and partial least‐squares (PLS) models, while it is exposed to a humid atmosphere. Polymer solutions used in this study were made with highly polar solvents exhibiting both a high affinity for water and a low volatility such as dimethylformamide, dimethylacetamide, and N‐methylpyrrolidone. Poly(ethersulfone) and poly(etherimide) were chosen as polymer models as the method could provide useful information for coating process and membrane fabrication monitoring. Whereas gravimetric kinetics yield data on the overall mass transfer, including both water absorption and solvent evaporation, in situ analyses using NIR can quantify separately the solvent and nonsolvent concentration change in the polymer solution. Quantitative models were developed using PLS regression to predict the local water, polymer, and solvent weight fractions in the polymer solution. The method was proved to be suitable for the different studied systems and allowed to infer mass transfers until the onset of the phase separation process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1960–1969, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号