首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3′-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs–aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1–20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules.  相似文献   

2.
Measurement of myoglobin (Mb) in human blood serum is of great interest for quick diagnosis of acute myocardial infarction (AMI). In this study, a novel fluorescent aptasensor was designed for ultrasensitive and selective detection of Mb, based on target-induced high fluorescence intensity, complementary strand of aptamer (CS), PicoGreen (PG) dye, exonuclease III (Exo III) and silica nanoparticles coated with streptavidin (SNPs-Streptavidin). The developed aptasensor obtains characteristics of SNPs as enhancers of fluorescence intensity, Exo III as an enzyme which selectively digests the 3'-end of double-stranded DNA (dsDNA), PG as a fluorescent dye which could selectively bind to dsDNA and high selectivity and sensitivity of aptamer (Apt) toward its target. In the absence of Mb, no free CS remains in the environment of SNPs-Streptavidin, resulting in a weak fluorescence emission. In the present of Mb, dsDNA-modified SNPs-Streptavidin complex forms, leading to a very strong fluorescence emission. The developed fluorescent aptasensor exhibited high specificity toward Mb with a limit of detection (LOD) as low as 52 pM. In addition, the designed fluorescent aptasensor was efficiently used to detect Mb in human serum.  相似文献   

3.
An autonomous DNA nanomachine based on rolling circle amplification (RCA)-bridged two-stage exonuclease III (Exo III)-induced recycling amplification (Exo III-RCA-Exo III) was developed for label-free and highly sensitive homogeneous multi-amplified detection of DNA combined with sensitive fluorescence detection technique. According to the configuration, the analysis of DNA is accomplished by recognizing the target to a unlabeled molecular beacon (UMB) that integrates target-binding and signal transducer within one multifunctional design, followed by the target-binding of UMB in duplex DNA removed stepwise by Exo III accompanied by the releasing of target DNA for the successive hybridization and cleavage process and autonomous generation of the primer that initiate RCA process with a rational designed padlock DNA. The RCA products containing thousands of repeated catalytic sequences catalytically hybridize with a hairpin reporter probe that includes a “caged” inactive G-quadruplex sequence (HGP) and were then detected by Exo III-assisted recycling amplification, liberating the active G-quadruplex and generating remarkable ZnPPIX/G-quadruplex fluorescence signals with the help of zinc(II)-protoporphyrin IX (ZnPPIX). The proposed strategy showed a wide dynamic range over 7 orders of magnitude with a low limit of detection of 0.51 aM. In addition, this designed protocol can discriminate mismatched DNA from perfectly matched target DNA, and holds a great potential for early diagnosis in gene-related diseases.  相似文献   

4.
A homogeneous hemin/G-quadruplex DNAzyme (HGDNAzyme) based turn-on chemiluminescence aptasensor for interferon-gamma (IFN-γ) detection is developed, via dynamic in-situ assembly of luminol functionalized gold nanoparticles (lum-AuNPs), DNA, IFN-γ and hemin. The G-quadruplex oligomer of the HGDNAzyme was split into two halves, which was connected with the complementary sequence of P1 (IFN-γ-binding aptamer) to form the oligonucleotide P2. P2 hybridized with IFN-γ-binding aptamer and meanwhile assembled onto lum-AuNPs through biotin–streptavidin specific interaction. When IFN-γ was recognized by aptamer, P2 was released into the solution. The two lateral portions of P2 combined with hemin to yield the catalytic hemin/G-quadruplex DNAzyme, which amplified the luminol oxidation for a turn-on chemiluminescence signaling. Based on this strategy, the homogeneous aptasensor enables the facile detection of IFN-γ in a range of 0.5–100 nM. Moreover, the aptasensor showed high sensitivity (0.4 nM) and satisfactory specificity, pointing to great potential applications in clinical analysis.  相似文献   

5.
该文基于酶辅助靶标循环信号放大策略构建了用于黄曲霉毒素B1(AFB1)高灵敏检测的化学发光适体传感器。以G-四链体/氯化血红素DNA酶为信号分子设计了免标记的适体探针H1-S1和发夹探针H2。适体探针结合目标AFB1,在核酸外切酶I辅助下,触发靶标循环反应产生发夹H1。发夹H1与H2杂交,释放出完整的G-四链体序列,并进一步与氯化血红素结合形成G-四链体/氯化血红素DNA酶。DNA酶通过催化氧化鲁米诺-H2O2化学发光体系产生化学发光信号,实现AFB1的放大检测。在最优实验条件下,化学发光强度与AFB1质量浓度的对数在0.001~100 ng/mL范围内呈良好的线性关系,相关系数(r2)为0.9955,检出限为0.93 pg/mL,回收率为93.7%~107%。该适体传感器操作简单、灵敏度高、特异性好,在黄曲霉毒素污染检测方面具有良好的应用前景。  相似文献   

6.
In this work, a dual-signaling electrochemical aptasensor based on exonuclease-catalyzed target recycling was developed for thrombin detection. The proposed aptasensor coupled “signal-on” and “signal-off” strategies. As to the construction of the aptasensor, ferrocene (Fc) labeled thrombin binding aptamer (TBA) could perfectly hybridize with the methylene blue (MB) modified thiolated capture DNA to form double-stranded structure, hence emerged two different electrochemical signals. In the presence of thrombin, TBA could form a G-quadruplex structure with thrombin, leading to the dissociation of TBA from the duplex DNA and capture DNA formed hairpin structure. Exonuclease could selectively digest single-stranded TBA in G-quadruplex structure and released thrombin to realize target recycling. As a consequence, the electrochemical signal of MB enhanced significantly, which realized “signal on” strategy, meanwhile, the deoxidization peak current of Fc decreased distinctly, which realized “signal off” strategy. The employment of exonuclease and superposition of two signals significantly improved the sensitivity of the aptasensor. In this way, an aptasensor with high sensitivity, good stability and selectivity for quantitative detection of thrombin was constructed, which exhibited a good linear range from 5 pM to 50 nM with a detection limit of 0.9 pM (defined as S/N = 3). In addition, this design strategy could be applied to the detection of other proteins and small molecules.  相似文献   

7.
Here, we combine T7 exonuclease (T7 Exo) signal amplification and polystyrene nanoparticle (PS NP) amplification to develop novel fluorescence polarization (FP) aptasensors. The binding of a target/open aptamer hairpin complex or a target/single‐stranded aptamer complex to dye‐labeled DNA bound to PS NPs, or the self‐assembly of two aptamer subunits (one of them labeled with a dye) into a target/aptamer complex on PS NPs leads to the cyclic T7 Exo‐catalyzed digestion of the dye‐labeled DNA or the dye‐labeled aptamer subunit. This results in a substantial decrease in the FP value for the amplified sensing process. Our newly developed aptasensors exhibit a sensitivity five orders of magnitude higher than that of traditional homogeneous aptasensors and a high specificity for the target molecules. These distinct advantages of our proposed assay protocol make it a generic platform for the design of amplified aptasensors for ultrasensitive detection of various target molecules.  相似文献   

8.
Zhang X  Zhao Z  Mei H  Qiao Y  Liu Q  Luo W  Xia T  Fang X 《The Analyst》2011,136(22):4764-4769
A novel fluorescence aptasensor based on DNA charge transport for sensitive protein detection has been developed. A 15nt DNA aptamer against thrombin was used as a model system. The aptamer was integrated into a double strand DNA (dsDNA) that was labeled with a hole injector, naphthalimide (NI), and a fluorophore, Alexa532, at its two ends. After irradiation by UV light, the fluorescence of Alexa532 was bleached due to the oxidization of Alexa532 by the positive charge transported from naphthalimide through the dsDNA. In the presence of thrombin, the binding of thrombin to the aptamer resulted in the unwinding of the dsDNA into ssDNA, which led to the blocking of charge transfer and the strong fluorescence emission of Alexa532. By monitoring the fluorescence signal change, we were able to detect thrombin in homogeneous solutions with high selectivity and high sensitivity down to 1.2 pM. Moreover, as DNA charge transfer is resistant to interferences from biological contexts, the aptasensor can be used directly in undiluted serum with similar sensitivity as that in buffer. This new sensing strategy is expected to promote the exploitation of aptamer-based biosensors for protein assays in complex biological matrixes.  相似文献   

9.
Taking advantage of exonuclease III (Exo III)-assisted signal attenuation strategy and the protection of DNA from Exo III-mediated digestion by specific DNA–protein interaction, a colorimetric method is proposed in this paper for protein assay. Specifically, in the absence of target protein, Exo III-assisted signal attenuation can be achieved by digesting the report DNA in a complex formed by the hybridization of a report DNA and a probe DNA. Nevertheless, in the presence of target protein, the binding of the analyte to the probe DNA will inhibit the Exo III-assisted nucleotides cleavage, so that cyclic signal attenuation is blocked. Therefore, a bridge can be established between the concentration of target protein and the degree of the attenuation of the obtained signal, and the relationship can be shown by the surface plasmon changes caused by the report DNA-induced aggregation of DNA-modified gold nanoparticles (AuNPs). Our method can also have considerable sensitivity and selectivity, which has been demonstrated by the assay of human α-thrombin. Furthermore, by simply changing the sequence of the probe DNA, we can expand the application of our method to not only aptamer binding proteins but also DNA binding proteins, thus we have also used this method to analyze a specific serological marker for systemic lupus erythematosus (SLE) in this study. With a broad detection range of 1.3–133 nM and a detection limit of 0.61 nM (S/N = 3), it may hold great promise for clinical application.  相似文献   

10.
硫代黄素T(ThT)荧光分子在自由状态下荧光强度很弱,通过在Tris-HCl缓冲液中加入Pb2+的适配体即富含G的DNA序列,可与ThT荧光分子形成G-四联体结构,使荧光信号迅速增强;向溶液中加入Pb2+,Pb2+与其适配体有很好的结合特异性,可生成更牢固的G-四联体结构,使ThT分子被释放出来,导致溶液的荧光强度降低,基于此可检测溶液中的Pb2+离子.实验中优化了缓冲溶液组成、ThT荧光分子浓度、Pb2+适配体浓度及反应时间等条件.结果表明,在10 mmol/L Tris-HCl(pH=8. 3,含2 mmol/L MgCl2)缓冲溶液中,ThT荧光分子和Pb2+适配体的浓度分别为10μmol/L和200 nmol/L,反应10 min时,随着溶液中Pb2+浓度的增加,荧光强度减弱.Pb2+浓度在20~1000 nmol/L范围内时,荧光强度与Pb2+的浓度呈现良好的线性关系(R...  相似文献   

11.
A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3′-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully.  相似文献   

12.
<正>目前非法药物的滥用已经成为全球性的公共安全卫生问题之一[1~3].其中可卡因作为一种全球禁用的非法药物,长期滥用会对人体造成许多不良的影响,如精神疾病、失眠、抑郁和暴力倾向等,甚至威胁生命,同时,吸食可卡因还会导致出现各种社会问题[4,5].因此实现对可卡因的快速检测成为打击  相似文献   

13.
Protein detection plays an important role in biological and biomedical sciences. The immunoassay based on fluorescence labeling has good specificity but a high labeling cost. Herein, on the basis of G-triplex molecular beacon (G3MB) and thioflavin T (ThT), we developed a simple and label-free biosensor for protein detection. The biotin and streptavidin were used as model enzymes. In the presence of target streptavidin (SA), the streptavidin hybridized with G3MB-b (biotin-linked-G-triplex molecular beacon) perfectly and formed larger steric hindrance, which hindered the hydrolysis of probes by exonuclease III (Exo III). In the absence of target streptavidin, the exonuclease III successively cleaved the stem of G3MB-b and released the G-rich sequences which self-assembled into a G-triplex and subsequently activated the fluorescence signal of thioflavin T. Compared with the traditional G-quadruplex molecular beacon (G4MB), the G3MB only needed a lower dosage of exonuclease III and a shorter reaction time to reach the optimal detection performance, because the concise sequence of G-triplex was good for the molecular beacon design. Moreover, fluorescence experiment results exhibited that the G3MB-b had good sensitivity and specificity for streptavidin detection. The developed label-free biosensor provides a valuable and general platform for protein detection.  相似文献   

14.
A label-free and turn-off fluorescent method for the quantitative detection of kanamycin based on a functional molecular beacon was developed. The molecular beacon consists of two hairpin structures with a split G-rich oligonucleotide in the middle. The kanamycin's aptamer formed the loops portion for recognizing kanamycin, and the G-quadruplex bound by Thioflavin T(ThT) was employed as the reporter. In the absence of target, the molecular beacon folded into double stem-loops and the splited G-rich oligonucleotid came close to form a G-quadruplex. When ThT bound to the G-quadruplex, the fluorescence intensity of the solution increased. Upon the addition of kanamycin, the function between kanamycin and aptamer unfolded the hairpin and disassembled the G-quadraplex structure, resulting in a significant decrease in the fluorescence intensity. A good linear relationship ranging from 0.7 nmol/L to 10 nmol/L was achieved and the limit of detection was 0.37 nmol/L. Besides, it could efficiently recognize kanamycin in real samples.  相似文献   

15.
An ultrasensitive and signal‐on electrochemiluminescence (ECL) aptasensor to detect target protein (thrombin or lysozyme) was developed using the host‐guest recognition between a metallocyclodextrin complex and single‐stranded DNA (ss‐DNA). The aptasensor uses both the photoactive properties of the metallocyclodextrins named multi‐tris(bipyridine)ruthenium(II)‐β‐cyclodextrin complexes and their specific recognition with ss‐DNA, which amplified the ECL signal without luminophore labeling. After investigating the ECL performance of different multi‐tris(bipyridine)ruthenium(II)‐β‐cyclodextrin (multi‐Ru‐β‐CD) complexes, tris‐tris(bipyridine)‐ruthenium(II)‐β‐cyclodextrin (tris(bpyRu)‐β‐CD) was selected as a suitable host molecule to construct an atasensor. First, double‐stranded DNA (ds‐DNA) formed by hybridization of the aptamer and its target DNA was attached to a glassy carbon electrode via coupling interaction, which showed low ECL intensity with 2‐(dibutylamino) ethanol (DBAE) as coreactant, because of the weak recognition between ds‐DNA and tris(bpyRu)‐β‐CD. Upon addition of the corresponding protein, the ECL intensity increased when target ss‐DNA was released because of the higher stability of the aptamer‐protein complex than the aptamer‐DNA one. A linear relationship was observed in the range of 0.01 pmol/L to 100 pmol/L between ECL intensity and the logarithm of thrombin concentrations with a limited detection of 8.5 fmol/L (S/N=3). Meanwhile, the measured concentration of lysozyme was from 0.05 pmol/L to 500 pmol/L and the detection limit was 33 fmol/L (S/N=3). The investigations of proteins in human serum samples were also performed to demonstrate the validity of detection in real clinical samples. The simplicity, high sensitivity and specificity of this aptasensor show great promise for practical applications in protein monitoring and disease diagnosis.  相似文献   

16.
We have developed an amplified fluorescence polarization aptasensor that relies on aptamer structure-switching-triggered nanoparticles (NPs) enhancement for biomolecules detection. This new type of assay exhibits higher detection sensitivity over traditional homogeneous aptasensors by two orders of magnitude and high specificity for target molecules.  相似文献   

17.
A sensitive and selective surface plasmon resonance (SPR) aptasensor has been developed for the real-time determination of lysozyme. The thiol-terminated lysozyme aptamer was covalently attached to the surface of sensor through Au–S bonding. In the presence of lysozyme, the aptamer captured lysozyme on the surface and enhanced the SPR signal that was proportional to the concentration of lysozyme. Under the optimized conditions, the SPR signal was linear with lysozyme concentration from 1 to 100?µmol/L. The detection limit for lysozyme was 0.5?µmol/L. The aptasensor also provided high specificity for lysozyme and was unaffected by other proteins. This aptasensor provides rapid, simple, and sensitive determination of lysozyme detection and a promising strategy for other proteins.  相似文献   

18.
An ultrasensitive fluorescence resonance energy transfer (FRET) bioassay was developed to detect staphylococcal enterotoxin B (SEB), a low molecular exotoxin, using an aptamer-affinity method coupled with upconversion nanoparticles (UCNPs)-sensing, and the fluorescence intensity was prominently enhanced using an exonuclease-catalyzed target recycling strategy. To construct this aptasensor, both fluorescence donor probes (complementary DNA1–UCNPs) and fluorescence quencher probes (complementary DNA2–Black Hole Quencher3 (BHQ3)) were hybridized to an SEB aptamer, and double-strand oligonucleotides were fabricated, which quenched the fluorescence of the UCNPs via FRET. The formation of an aptamer–SEB complex in the presence of the SEB analyte resulted in not only the dissociation of aptamer from the double-strand DNA but also both the disruption of the FRET system and the restoration of the UCNPs fluorescence. In addition, the SEB was liberated from the aptamer–SEB complex using exonuclease I, an exonuclease specific to single-stranded DNA, for analyte recycling by selectively digesting a particular DNA (SEB aptamer). Based on this exonuclease-catalyzed target recycling strategy, an amplified fluorescence intensity could be produced using different SEB concentrations. Using optimized experimental conditions produced an ultrasensitive aptasensor for the detection of SEB, with a wide linear range of 0.001–1 ng mL−1 and a lower detection limit (LOD) of 0.3 pg mL−1 SEB (at 3σ). The fabricated aptasensor was used to measure SEB in a real milk samples and validated using the ELISA method. Furthermore, a novel aptasensor FRET assay was established for the first time using 30 mol% Mn2+ ions doped NaYF4:Yb/Er (20/2 mol%) UCNPs as the donor probes, which suggests that UCNPs are superior fluorescence labeling materials for food safety analysis.  相似文献   

19.
Saxitoxin is one of the most harmful paralytic shellfish toxins due to its high toxicity and adverse effects on the environment and human health. Aptasensors provide simple detection procedures because they have the advantages of chemical stability, easy synthesis and modification, and high convenience in signal transformation. Surface-enhanced Raman scattering (SERS) is an analytical technique that amplifies the analytical signals of molecules at extremely low concentrations, or even at the single molecule level, when the analyte is very close to rough metal surfaces or nanostructures. In this study, an SERS aptasensor is reported for the determination of saxitoxin for the first time. The optimized saxitoxin aptamer (M-30f) was modified on gold nanoparticles and served as the recognition element. Crystal violet was used as the Raman reporter without chemical bounding. The analytical principles of the aptasensor are that saxitoxin destabilized the conformations of the aptamer at high temperature conditions and altered the binding of crystal violet on the gold nanoparticles. In the presence of saxitoxin, the conformation of aptamer containing the G-quadruplex that selectively bound crystal violet unfolded to a large extent and hence the crystal violet molecules were released from gold nanoparticles with a reduced SERS signal. The effects of the gold nanoparticle size, the amount of DNA, aptamer density, sodium chloride concentration, and operation temperature upon the SERS determination were optimized. The resulting simple SERS aptasensor was developed with a satisfactory limit of detection (11.7?nM) and selectivity. The application for the analysis of real shellfish samples with simple procedures demonstrates that this SERS aptasensor is promising for on-site applications.  相似文献   

20.
In this paper, we report an improved electrochemical aptasensor based on exonuclease III and double-stranded DNA (dsDNA)-templated copper nanoparticles (CuNPs) assisted signal amplification. In this sensor, duplex DNA from the hybridization of ligated thrombin-binding aptamer (TBA) subunits and probe DNA can act as an effective template for the formation of CuNPs on the electrode surface, so copper ions released from acid-dissolution of CuNPs may catalyze the oxidation of ο-phenylenediamine to produce an amplified electrochemical response. In the presence of thrombin, a short duplex domain with four complementary base pairs can be stabilized by the binding of TBA subunits with thrombin, in which TBA subunit 2 can be partially digested from 3′ terminal with the cycle of exonuclease III, so the ligation of TBA subunits and the subsequent formation of CuNPs can be inhibited. By electrochemical characterization of dsDNA-templated CuNPs on the electrode surface, our aptasensor can display excellent performances for the detection of thrombin in a broad linear range from 100 fM to 1 nM with a low detection limit of 20.3 fM, which can also specially distinguish thrombin in both PBS and serum samples. Therefore, our aptasensor might have great potential for clinical diagnosis of biomarkers in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号