首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Polymer-based organic solar cells are known to offer a poor stability in real use conditions, and the photodegradation of the active organic layer plays an important role in the reduced lifetime of the devices. This paper focuses on the photodegradation of two conjugated polymers used in organic solar cells, namely poly(2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene (MDMO-PPV) and poly(3-hexyylthiophene) (P3HT), and their blends with [60]PCBM (methano-fullerene[6,6]-phenyl C61-butyric acid methyl ester), a fullerene derivative. MDMO-PPV and P3HT thin films were submitted to photoageing (λ > 300 nm) in the presence and in the absence of oxygen. The mechanisms by which these polymers degrade were elucidated. P3HT, pristine and blended with PCBM, was shown to be much more stable under illumination than MDMO-PPV. The results showed that, if deposited on an inert substrate and well protected from oxygen with a convenient encapsulation, P3HT:PCBM based active layer should be intrinsically stable for several years in use conditions.  相似文献   

2.
Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells   总被引:3,自引:0,他引:3  
Bulk heterojunction photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline ZnO nanoparticles (nc-ZnO) as electron acceptor have been studied. Composite nc-ZnO:MDMO-PPV films were cast from a common solvent mixture. Time-resolved pump-probe spectroscopy revealed that a photoinduced electron transfer from MDMO-PPV to nc-ZnO occurs in these blends on a sub-picosecond time scale and produces a long-lived (milliseconds) charge-separated state. The photovoltaic effect in devices, made by sandwiching the active nc-ZnO:MDMO-PPV layer between charge-selective electrodes, has been studied as a function of the ZnO concentration and the thickness of the layer. We also investigated changing the degree and type of mixing of the two components through the use of a surfactant for ZnO and by altering the size and shape of the nc-ZnO particles. Optimized devices have an estimated AM1.5 performance of 1.6% with incident photon to current conversion efficiencies up to 50%. Photoluminescence spectroscopy, atomic force microscopy, and transmission electron microscopy have been used to gain insight in the morphology of these blends.  相似文献   

3.
Novel block copolymers, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO) were synthesized via Suzuki coupling reaction of P3HT and PEO homopolymers. The copolymers were characterized by NMR, gel permeation chromatography, differential scanning calorimeter, and UV–vis measurements. A series of devices based on the block copolymers with a fullerene derivative were evaluated after thermal or solvent annealing. The device using P3HT‐b‐PEO showed higher efficiency than using P3HT blend after thermal annealing. Phase‐separated structures in the thin films of block copolymer blends were investigated by atomic force microscopy to clarify the relationship between morphologies constructed by annealing and the device performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
The dependence of the thin film morphology and excited-state dynamics for the low-bandgap donor-acceptor copolymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) in pristine films and in blends (1:2) with [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) on the use of the solvent additive 1,8-octanedithiol (ODT) is studied by solid-state nuclear magnetic resonance (NMR) spectroscopy and broadband visible and near-infrared pump-probe transient absorption spectroscopy (TAS) covering a spectral range from 500-2000 nm. The latter allows monitoring of the dynamics of excitons, bound interfacial charge-transfer (CT) states, and free charge carriers over a time range from femto- to microseconds. The broadband pump-probe experiments reveal that excitons are not only generated in the polymer but also in PCBM-rich domains. Depending on the morphology controlled by the use of solvent additives, polymer excitons undergo mainly ultrafast dissociation (<100 fs) in blends prepared without ODT or diffusion-limited dissociation in samples prepared with ODT. Excitons generated in PCBM diffuse slowly to the interface in both samples and undergo dissociation on a time scale of several tens of picoseconds up to hundreds of picoseconds. In both samples a significant fraction of the excitons creates strongly bound interfacial CT states, which exhibit subnanosecond geminate recombination. The total internal quantum efficiency loss due to geminate recombination is estimated to be 50% in samples prepared without ODT and is found to be reduced to 30% with ODT, indicating that more free charges are generated in samples prepared with solvent additives. In samples prepared with ODT, the free charges exhibit clear intensity-dependent recombination dynamics, which can be modeled by Langevin-type recombination with a bimolecular recombination coefficient of 6.3 × 10(-11) cm(3) s(-1). In samples prepared without ODT, an additional nanosecond recombination of polaron pairs is observed in conjunction with an increased intensity-independent trap-assisted nongeminate recombination of charges. Furthermore, a comparison of the triplet-induced absorption spectra of PCPDTBT with the charge-induced absorption in PCPDTBT:PCBM blends reveals that triplets have a very similar excited-state absorption spectrum compared to the free charge carriers, however, in contrast have a distinct intensity-independent lifetime. Overall, our results suggest that whether free charges or strongly bound CT states are created upon dissociation of excitons at the PCPDTBT:PCBM interface is determined instantaneously upon exciton dissociation and that once formed strongly bound CT states rapidly recombine and thus are unlikely to dissociate into free charges. The observation of a significantly larger bimolecular recombination coefficient than previously determined for poly(3-hexylthiophen-2,5-diyl):PCBM (P3HT:PCBM) and PCDTBT:PCBM samples indicates that nongeminate recombination of free charges considerably competes with charge extraction in PCPDTBT:PCBM photovoltaic devices.  相似文献   

5.
In this article, we present the research on the influence of the composition of thin films of a blend of poly (3-hexylthiophene −2,5-diyl) - P3HT with fullerene derivatives [6,6]-phenyl-C71-butyric acid methyl ester – PC70BM and [6,6]-phenyl-C61-butyric acid methyl ester – PC60BM on their thermal transitions. The influence of molar mass (Mw) of P3HT (Mw = 65.2; 54.2 and 34.1 kDa) and PCBM (PC60BM – Mw = 911 g/mol and PC70BM – Mw = 1031 g/mol) is examined in details. The article presents significantly expanded research compared to our previous work on thermal transitions in thin films of blend P3HT (Mw = 65.2 kDa) with PC60BM. For this reason, we also compare current results with previous ones. Here, we present for the first time a phase diagram of thin films of the P3HT(Mw = 65.2 kDa):PC70BM blend using variable-temperature ellipsometry. Our research reveals the presence of characteristic temperatures of pure phases in thin films of P3HT: PCBM blends. It turns out that the cold crystallization temperature of the P3HT phase in P3HT(Mw = 65.2 kDa):PC70BM blend films is lower than corresponding temperature in P3HT(Mw = 65.2 kDa):PC60BM blend films. At the same time, the cold crystallization temperature of the PC70BM phase behaves inversely. We demonstrate also that variable-temperature spectroscopic ellipsometry is a very sensitive technique for studying thermal transitions in these thin films. In addition, we show that the entire phase diagram can be determined based on the raw ellipsometric data analysis, e.g. using a delta angle at wavelength λ = 280 nm.  相似文献   

6.
We use Dip-Pen Nanolithography (DPN) to generate monolayer surface templates for guiding pattern formation in spin-coated polymer blend films. We study template-directed pattern formation in blends of polystyrene/poly(2-vinylpyridine) (PS/P2VP) as well as blends of PS and the semiconducting conjugated polymer poly(3-hexylthiophene) (P3HT). We show that acid-terminated monolayers can be used to template pattern formation in PS/P3HT blends, while hydrophobic monolayers can be used to template pattern formation in PS/P2VP blends. In both blends, the polymer patterns comprise laterally-phase separated regions surrounded by vertically separated bilayers. We hypothesize that the observed patterns are formed by template-induced dewetting of the bottom layer of a polymer bilayer during the spin-coating process. We compare the effects of template feature size and spacing on the resulting polymer patterns with predictions from published models of template-directed dewetting in thin films and find the data in good agreement. For both blends we observe that a minimum feature size is required to nucleate dewetting/phase separation. We find this minimum template diameter to be approximately 180 nm in 50/50 PS/P2VP blends, and approximately 100 nm in 50/50 PS/P3HT blends. For larger template diameters, PS/P2VP blends show evidence for pattern formation beginning at the template boundaries, while PS/P3HT blends rupture randomly across the template features.  相似文献   

7.
In this work the phase behavior of [6,6]-phenyl C(61)-butyric acid methyl ester (PCBM) blends with different poly(phenylene vinylene) (PPV) samples is investigated by means of standard and modulated temperature differential scanning calorimetry (DSC and MTDSC) and rapid heat-cool calorimetry (RHC). The PPV conjugated polymers include poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV), High T(g)-PPV which is a copolymer, and poly((2-methoxy-5-phenethoxy)-1,4-phenylene vinylene) (MPE-PPV). Comparisons of these PPV:PCBM blends with regioregular poly(3-hexyl thiophene) (P3HT):PCBM blends are made to see the different component miscibilities among different blends. The occurrence of liquid-liquid phase separation in the molten state of MDMO-PPV:PCBM and High T(g)-PPV:PCBM blends is indicated by the coexistence of double glass transitions for blends with a PCBM weight fraction of around 80 wt%. This is in contrast to the P3HT:PCBM blends where no phase separation is observed. Due to its high cooling rate (about 2000 K min(-1)), RHC proves to be a useful tool to investigate the phase separation in PPV:PCBM blends through the glass transition of these crystallizable blends. P3HT is found to have much higher thermal stability than the PPV samples.  相似文献   

8.
It is known that poly(3‐alkylthiophene) (P3AT) side‐chain length notably influences the photovoltaic performances of relating devices. However, comprehensively study on its impact on the structures of P3ATs and their blends with [6, 6]‐phenyl‐C61 butyric acid methyl ester (PCBM) is insufficient. By using solid‐state NMR and FTIR techniques, four P3ATs and their PCBM blends are investigated in this work, focusing on the phase structures as modulated by side‐chain length. Recently, we revealed multiple crystalline main‐chain packings of packing a and b together with a mesophase in poly(3‐butylthiophene) (P3BT) films (DOI: 10.1021/acs.macromol.6b01828). Here, the semicrystalline structures are investigated on poly(3‐hexylthiophene) (P3HT), poly(3‐octylthiophene) (P3OT), and poly(3‐dodecylthiophene) (P3DDT) with traditional form I modification, where packing a and the amorphous phase are probed. Furthermore, crystallized side chain within packing a is detected in both P3OT and P3DDT films, which shows a FTIR absorption at 806 cm−1. Structural studies are also conducted on P3AT:PCBM blends. Compared with the pure P3ATs, the polymer crystallinities of the blends show reduction of about 40% for P3OT and P3DDT, whereas only about 10% for P3HT. Moreover, in P3BT:PCBM and P3HT:PCBM, the crystalline polymers and PCBM are phase separated, while in P3OT:PCBM and P3DDT:PCBM, blend components are mostly miscible. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 751–761  相似文献   

9.
In this study, the maleimide‐thiophene copolymer‐functionalized graphite oxide sheets (PTM21‐GOS) and carbon nanotubes (PTM21‐CNT) were developed for polymer solar cell (PSC) applications. The grafting of PTM21‐OH onto the CNT and GO sheets was confirmed using FTIR spectroscopy. PTM21‐CNT and PTM21‐GOS exhibited excellent dispersal behavior in organic solvents. Better thermal stability was observed for PTM21‐CNT and PTM21‐GOS as compared with that for PTM21‐OH. In addition, the optical band gaps of PTM21‐GOS and PTM21‐CNT were lower than that of PTM21‐OH. We incorporated PTM21‐GOS and PTM21‐CNT individually into poly(3‐hexylthiophene) (P3HT)/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends for use as photoconversion layers of PSCs. Good distributional homogeneity was observed for PTM21‐GOS or PTM21‐CNT in the P3HT/PCBM blend film. The UV–vis absorption peaks of the blend films red‐shifted slightly upon increasing the content of PTM21‐GOS or PTM21‐CNT. The band gap energies and LUMO/HOMO energy levels of the P3HT/PTM21‐GOS and P3HT/PTM21‐CNT blend films were slightly lower than those of the P3HT film. The conjugated polymer‐functionalized PTM21‐GOS and PTM21‐CNT behaved as efficient electron acceptors and as charge‐transport assisters when incorporated into the photoactive layers of the PSCs. PV performance of the PSCs was enhanced after incorporating PTM21‐GOS or PTM21‐CNT in the P3HT/PCBM blend. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

10.
以聚3-己基噻吩(P3HT)为给体、[6,6]-苯基-C61-丁酸甲酯(PCBM)为受体的光伏体系作为研究对象,采用溶剂退火的后处理方法制备薄膜样品,利用紫外-可见(UV-Vis)吸收光谱、原子力显微镜(AFM)、X射线衍射(XRD)等测试手段分别对共混膜样品的形貌和结构进行表征,同时利用熵值统计方法对AFM形貌图像进行分析处理.并在此基础上制备太阳能电池器件,其结构为氧化铟锡导电玻璃/聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐/聚3-己基噻吩:[6,6]-苯基-C61-丁酸甲酯/金属铝(ITO/PEDOT:PSS/P3HT:PCBM/Al),研究了给受体共混比例(质量比)对活性层薄膜以及电池性能的影响.结果表明,受体PCBM含量的增加会影响P3HT给体相的有序结晶,当给受体比例为1:1时,活性层薄膜具有较宽的紫外-可见吸收特征,且具有较好的相分离和结晶度,基于该样品制备的电池器件其光电转换效率达到三种比例的最大值(2.77%).表明退火条件下,改变给受体比例可以影响活性层的微纳米结构而最终影响电池的光电转换效率.  相似文献   

11.
The photovoltaic properties and exciton decay dynamics of three polyoxometalate (POM)‐containing hybrid rod–coil diblock copolymers (HDCPs), PS‐Mo6‐PT1–3 , are studied. Single‐component photovoltaic cells of PS‐Mo6‐PT2 and inverted solar cells based on ZnO nanorod arrays/ PS‐Mo6‐PT1–3 are fabricated showing power conversion efficiencies only up to 0.055%. To understand the poor photovoltaic performance, femtosecond fluorescence up‐conversion technique is used to study the exciton decay dynamics of all three HDCPs. Drastically different fluorescence dynamics of the three HDCPs are observed in dilute solutions, which is attributed to the different extent and different type of interpolymer association depending on the P3HT rod block length and the cluster loading ratio. While both cation‐mediated POM cluster association and P3HT‐P3HT π‐stacking contribute significantly to PS‐Mo6‐PT2 aggregation, the aggregation of PS‐Mo6‐PT1 and that of PS‐Mo6‐PT3 is driven predominantly by cluster association and π‐stacking, respectively. In conjunction with the high residual polarization anisotropy, it is concluded that charge transfer from P3HT excitons to POM clusters in all three HDCPs is inefficient. An improved system with direct π‐conjugation between the POM clusters and the rod block addressing this issue has been proposed. © 2013 Wiley Periodicals, 2014 , 52, 122–133  相似文献   

12.
The nature of main in-plane skeleton Raman modes (C=C and C-C stretch) of poly(3-hexylthiophene) (P3HT) in pristine and its blend thin films with [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) is studied by resonant and nonresonant Raman spectroscopy and Raman simulations. Under resonant conditions, the ordered phase of P3HT with respect to its disordered phase is identified by (a) a large shift in the C=C mode peak position to lower wavenumber (~21 cm(-1) shift), (b) a narrower fwhm of the C=C mode (~9 cm(-1) narrower), (c) a larger intensity of the C-C mode relative to the C=C mode (~56% larger), and (d) a very small Raman dispersion (~5 cm(-1)) of the C=C mode. The behavior of the C=C and C-C modes of the ordered and disordered phases of P3HT can be explained in terms of different molecular conformations. The C=C mode of P3HT in P3HT:PCBM blend films can be reproduced by simple superposition of the two peaks observed in different phases of P3HT (ordered and disordered). We quantify the molecular order of P3HT after blending with PCBM and the subsequent thermal annealing to be 42 ± 5% and 94 ± 5% in terms of the fraction of ordered P3HT phase, respectively. The increased molecular order of P3HT in blends upon annealing correlates well with enhanced device performance (J(SC), -4.79 to -8.72 mA/cm(2) and PCE, 1.07% to 3.39%). We demonstrate that Raman spectroscopy (particularly under resonant conditions) is a simple and powerful technique to study molecular order of conjugated polymers and their blend films.  相似文献   

13.
Ternary blend bulk heterojunction (BHJ) solar cells containing as donor polymers two P3HT analogues, high-band-gap poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) (P3HT(75)-co-EHT(25)) and low-band-gap poly(3-hexylthiophene-thiophene-diketopyrrolopyrrole) (P3HTT-DPP-10%), with phenyl-C(61)-butyric acid methyl ester (PC(61)BM) as an acceptor were studied. When the ratio of the three components was varied, the open-circuit voltage (V(oc)) increased as the amount of P3HT(75)-co-EHT(25) increased. The dependence of V(oc) on the polymer composition for the ternary blend regime was linear when the overall polymer:fullerene ratio was optimized for each polymer:polymer ratio. Also, the short-circuit current densities (J(sc)) for the ternary blends were bettter than those of the binary blends because of complementary polymer absorption, as verified using external quantum efficiency measurements. High fill factors (FF) (>0.59) were achieved in all cases and are attributed to high charge-carrier mobilities in the ternary blends. As a result of the intermediate V(oc), increased J(sc) and high FF, the ternary blend BHJ solar cells showed power conversion efficiencies of up to 5.51%, exceeding those of the corresponding binary blends (3.16 and 5.07%). Importantly, this work shows that upon optimization of the overall polymer:fullerene ratio at each polymer:polymer ratio, high FF, regular variations in V(oc), and enhanced J(sc) are possible throughout the ternary blend composition regime. This adds to the growing evidence that the use of ternary blends is a general and effective strategy for producing efficient organic photovoltaics manufactured in a single active-layer processing step.  相似文献   

14.
任鑫  曹娇  袁帅  施利毅 《无机化学学报》2014,30(8):1863-1874
采用电沉积法制备出ZnO致密纳米颗粒膜和不同尺寸的纳米棒阵列。通过在ZnO上旋涂p型聚合物聚3-己基噻酚(P3HT)与n型富勒烯衍生物[6,6]-苯基-C61丁酸甲酯(PCBM)的混合物,并蒸镀金属Ag,制备出不同结构的杂化太阳能电池。通过扫描电镜、X射线衍射、光致发光和模拟太阳光光电性能测试,对ZnO的生长条件、晶体形貌及缺陷与太阳能电池性能之间的关系进行了系统研究。结果表明,ZnO的形貌和晶体缺陷的分布对杂化太阳能电池有重要影响,避免共混聚合物与ZnO缺陷聚集区的直接接触可有效消除电流泄漏。在电池结构方面,与ZnO纳米阵列块状结构杂化太阳能电池相比,共形结构的杂化太阳能电池可有效缩短空穴到金属电极的传输距离,增大聚合物与金属电极的接触面积,光电转换效率可提升64%~101%。  相似文献   

15.
We have studied the electron/hole transport and recombination dynamics in blends of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene], (MDMO-PPV) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) at room temperature, as a function of laser excitation density and PCBM concentration. The experimental results of these studies indicate the important role played by hole-trap states in MDMO-PPV. Electron and hole transport are not balanced within the blend. PCBM is a less disordered material than MDMO-PPV and electron transport dominates the response of the solar cell device.  相似文献   

16.
Despite the central role of light absorption and the subsequent generation of free charge carriers in organic and hybrid organic-inorganic photovoltaics, the precise process of this initial photoconversion is still debated. We employ a novel broadband (UV-Vis-NIR) transient absorption spectroscopy setup to probe charge generation and recombination in the thin films of the recently suggested hybrid material combination poly(3-hexylthiophene)/silicon (P3HT/Si) with 40 fs time resolution. Our approach allows for monitoring the time evolution of the relevant transient species under various excitation intensities and excitation wavelengths. Both in regioregular (RR) and regiorandom (RRa) P3HT, we observe an instant (<40 fs) creation of singlet excitons, which subsequently dissociate to form polarons in 140 fs. The quantum yield of polaron formation through dissociation of delocalized excitons is significantly enhanced by adding Si as an electron acceptor, revealing ultrafast electron transfer from P3HT to Si. P3HT/Si films with aggregated RR-P3HT are found to provide free charge carriers in planar as well as in bulk heterojunctions, and losses are due to nongeminate recombination. In contrast for RRa-P3HT/Si, geminate recombination of bound carriers is observed as the dominant loss mechanism. Site-selective excitation by variation of pump wavelength uncovers an energy transfer from P3HT coils to aggregates with a 1/e transfer time of 3 ps and reveals a factor of 2 more efficient polaron formation using aggregated RR-P3HT compared to disordered RRa-P3HT. Therefore, we find that polymer structural order rather than excess energy is the key criterion for free charge generation in hybrid P3HT/Si solar cells.  相似文献   

17.
Highly dense arrays of titania nanoparticles were fabricated using surface micellar films of poly(styrene-block-2-vinylpyridine) diblock copolymers (PS-b-P2VP) as reaction scaffolds. Titania could be introduced selectively within P2VP nanodomains in PS-b-P2VP films through the binary reaction between water molecules trapped in the P2VP domains and the TiCl(4) vapor precursors. Subsequent UV exposure or oxygen plasma treatment removed the organic matrix, leading to titania nanoparticle arrays on the substrate surface. The diameter of the titania domains and the interparticle distance were defined by the lateral scale present in the microphase-separated morphology of the initial PS-b-P2VP films. The typical diameter of titania nanoparticles obtained by oxygen plasma treatment was of the order of approximately 23 nm. Photoluminescence (PL) properties were investigated for films before and after plasma treatment. Both samples showed PL properties with major physical origin due to self-trapped excitons, indicating that the local environment of the titanium atoms is similar.  相似文献   

18.
The nanostructure of thermally annealed thin films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blends on hydrophobic and hydrophilic substrates was studied to unravel the relationship between the substrate properties and the phase structure of polymer blends in confined geometry. Indeed, the nature of the employed substrates was found to affect the extent of phase separation, the PCBM aggregation state and the texture of the whole system. In particular, annealing below the melting temperature of the polymer yielded the formation of PCBM nanometric crystallites on the hydrophobic substrates, while mostly amorphous microscopic aggregates were formed on the hydrophilic ones. Moreover, while an enhanced in-plane orientation of P3HT lamellae was promoted on hydrophobic substrates, a markedly tilted geometry was produced on the hydrophilic ones. The observed effects were interpreted in terms of a simple model connecting the interface free energy for the blend films to the different polymer chain mobility and diffusion velocity of PCBM molecules on the different substrates.  相似文献   

19.
The fully biodegradable polymer blends remain challenges for the application due to their undesirable comprehensive performance.Herein,remarkable combination of superior mechanical performance,bacterial resistance,and controllable degradability is realized in the biodegradable poly(L-lactide)/poly(butylene succinate) (PLLA/PBSU) blends by stabilizing the epoxide group modified titanium dioxide nanoparticles (m-TiO2) at the PLLA-PBSU interface through reactive blending.The m-TiO2 can not only act as interfacial compatibilizer but also play the role of photodegradation catalyst:on the one hand,binary grafted nanoparticles were in situ formed and stabilized at the interface to enhance the compatibility between polymer phases.As a consequence,the mechanical properties of the blend,such as the elongation at break,notched impact strength and tensile yield strength,were simultaneously improved.On the other hand,antibacterial and photocatalytic degradation performance of the composite films was synergistically improved,it was found that the m-TiO2 incorporated PLLA/PBSU films exhibit more effective antibacterial activity than the neat PLLA/PBSU films.Moreover,the analysis of photodegradable properties revealed that that m-TiO2 nanoparticles could act as a photocatalyst to accelerate the photodegradation rate of polymers.This study paves a new strategy to fabricate advanced PLLA/PBSU blend materials with excellent mechanical performance,antibacterial and photocatalytic degradation performance,which enables the potential utilization of fully degradable polymers.  相似文献   

20.
溶剂热法制备六角锥形ZnO及其光致发光性能   总被引:4,自引:0,他引:4  
通过乙酸锌和醇溶液反应得到了六角锥形纳米ZnO颗粒, 反应过程中不使用碱溶液和表面活性剂. 利用透射电子显微镜(TEM)、选区电子衍射(SAED)及扫描电子显微镜(SEM)对其形貌和结构进行了表征分析. 结果表明, 此方法制备的ZnO颗粒为单晶, 而且六角锥形ZnO的室温光致发光谱(PL)在378 nm处显示出了单纯的紫外发射峰, 而不是通常报道的可见光区发射, 这也预示着这种特殊结构的纳米ZnO将会成为一种具有良好应用前景的光学材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号