首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Abstract— Fluorescence spectra of native rye phytochrome were determined under different light conditions at liquid nitrogen temperature. Fluorescence spectrum of the red-light-absorbing form (Pr) had a major peak at about 685 nm (14 600 cm−1) and a broad sub-peak at about 515 nm (19 400 cm−1). The peak height at 685 nm was reduced by irradiation with monochromatic light of 640 nm, and a new peak became obvious at about 702 nm (14250 cm−1). This spectral change was almost completely reversed by subsequent irradiation with 700-nm light. Fluorescence spectrum of the photoequilibrium mixture of Pr and far-red-light absorbing form under continuous red light showed a sharp peak at about 685 nm having a peak height ca. 12% of Pr, and a broad sub-peak at about 508 nm (19 700 cm−1). Light of 730 nm did not reduce the peak height at about 685 nm but induced a new shoulder at about 699 nm (14300 cm−1). Monochromatic light of 640 and 700 nm given following the light of 730 nm could not reverse the spectral change at 699 nm induced by the irradiation with 730-nm light. Fluorescence spectrum of Pr in partially degraded phytochrome was similar to that in native phytochrome but the peak position in the red region was shifted by about 5 nm (100 cm−1) to the blue.  相似文献   

2.
Abstract. Phototransformation kinetics of 124-kDa oat phytochrome at 298 K after a red (660-nm) laser flash excitation were recorded at different wavelengths. The kinetics of the dark relaxation processes for lumi-R to Pfr can be satisfactorily described by only 3 rate constants: k = 28000 s-1 370 s-1 and 20 s-1. The first rate constant is due to the decay of lumi-R to meta -Ra. The latter two rate constants correspond to processes establishing the far-red (>700 nm) absorption band. No meta -Rb could be detected. From the wavelength dependency of the amplitudes of these two rates, parallel pathways in the formation of Pfr could be excluded. A unique sequential pathway for the dark relaxation leading to Pfr seems to be an intrinsic property of 124-kDa phytochrome, however. Assuming a sequential pathway, molar extinction coefficients for intermediates have been calculated. These values agree with molar extinction coefficients obtained from low-temperature spectra. The process with a rate constant of 370 s-1 corresponds to absorbance changes for the formation of meta -Rc from meta -Ra and the rate constant of 20 s-1 describes the absorbance changes due to the transformation of meta -Rc to Pfr.  相似文献   

3.
Abstract— We examined two published hypotheses on the signal-transduction chain of the light-oriented chloroplast movements in the fresh-water alga Mougeotia. One hypothesis postulates a Ca2+-influx controlled by a tetrapolar gradient of phytochrome in its far-red light absorbing form (Pfr). The other hypothesis postulates anchorage sites for actin-filaments even at those areas of the plasmalemma where phytochrome is in its inactive form (Pr). Calmodulin and Ca2+-sequestering vesicles are assumed to be essential links of this transduction chain.
To test these hypotheses we have studied the effects of Ca2+-entry blockers, Ca2+ deficiency and calmodulin antagonists on chloroplast movements and on chloroplast anchorage. None of our results support the Ca2+/calmodulin hypotheses mentioned above. The results and their implications (with regard to the role of Ca2', calmodulin and anchorage sites) are discussed.  相似文献   

4.
The photoreaction between Pτ and the first detectable intermediate, lumi-R, of 124-kdalton oat phytochrome has been investigated at low temperatures. The temperature dependence of the quantum yields of the photoreactions, Pτ to lumi-R and lumi-R to Pτ, has been determined. From measurements over a temperature range from 119 to 155 K, an activation barrier of 3.6 ± 0.5 kJ mol 1 is found for the photoreaction of Pτ with 661-nm actinic light. A higher value (5.7 ± 0.7 kJ mol -1) is found for the photoreaction of lumi-R to Pτ. with 698-nm actinic light. Increased quantum yields are found in deuterated buffer solutions at low temperatures. The activation energies for deuterated phytochrome (3.2 ± 0.7 kJ mol–1 for Pτ with 661-nm irradiation and 6.2 ± 1.2 kJ mol-1 for lumi-R at 698-nm irradiation) are identical within the limits of error with those of protonated phytochrome. The lack of a deuterium effect for the activation energies favors the Z,E-isomerization rather than proton transfer or tautomerization for the chromophore photochemistry during Pτ⇄lumi-R conversion.  相似文献   

5.
RESONANCE RAMAN SPECTRA OF THE Pr-FORM OF PHYTOCHROME   总被引:1,自引:0,他引:1  
Abstract— Resonance Raman spectra of the Pr-form of oat phytochrome have been obtained at 77 K. Interference from phytochrome fluorescence is avoided by employing far-red 752 nm excitation. Vibrational assignments are suggested for the tetrapyrrole chromophore in phytochrome by comparison with previously published model compound spectra and by examining the characteristic shifts induced by deuteration of the pyrrole nitrogens. The lack of carbonyl intensity, the frequencies of the 1626 and 1644 cm-1 C=C stretching modes, and the presence of an intense mode at 1326 cm-1 are all consistent with a protonated structure for the tetrapyrrole chromophore in Pr. This suggests that the -50 nm red-shift of the protein-bound chromophore absorption compared to the chromophore in vitro is caused by protonation of the pyrrole nitrogen.  相似文献   

6.
The aggregation of phytochrome purified from etiolated pea ( Pisum satirum cv. Alaska) and rye ( Secale cereale cv. Cougar) tissues was investigated by centrifugation and turbidimetry. Purified pea phytochrome (A669/A280= 0.88), if irradiated with red light, became precipitable in the presence of CaCl2. The precipitation upon red-light irradiation was optimal at a Ca2- or Mg2+ concentration of 10–20 m M , was greater at increased phytochrome concentration or lower pH values, and was inhibited by 0.1 M KG. The precipitated phytochrome slowly became soluble after far-red light exposure.
Turbidity of pea phytochrome solutions after red-light irradiation also increased rapidly in the presence of either Ca2+ or Mg2+. Far-red light exposure after the red light cancelled the turbidity increase. Rye phytochrome showed less turbidity increase than pea phytochrome and occurred only in the presence of Ca2+. Partially degraded pea phytochrome produced by endogenous proteases in the extract did not show the turbidity increase. Undegraded pea phytochrome also associated with microsomal fractions under conditions similar to those described above, but the partially degraded phytochrome did not.  相似文献   

7.
Abstract— The wavelengths most active in influencing the growth of segments of oat mesocotyl are 435 nm (blue), 665 nm (red) and 730 nm (far red). Using a high-energy source (1.5 × 1018 quanta/cm2), an inhibition in all areas of the spectrum except the far red was obtained. The efficiency of the different radiations was studied: blue light is the most active, red and far red have about the same efficiency; green is a thousand times less active. The effect induced by blue light cannot be directly attributed to phytochrome, because the wavelength of maximum effect does not correspond with that of maximum absorption of the pigment (there is 55 nm difference); also, blue light is more active than the red radiation.  相似文献   

8.
Abstract— From light-induced changes in linear dichroism, we have calculated the rotation of the long-wavelength-absorbing transition moment that occurs during phototransformation of 124-kilodalton Avena sativa phytochrome. Phytochrome was purified to homogeneity and immobilized onto Sepharose beads covalently coated with antibodies against A. sativa phytochrome. Changes in linear dichroism were induced by plane-polarized red or far-red light and measured by the absorbance differences at 660 and 730 nm using a dual-wavelength spectrophotometer equipped with polarizing filters in the measuring beams. From such measurements, we calculate a rotation angle of 31o (or 149o) during photoconversion of Pr to Pfr and 30o (or 150o) during photoconversion of Pfr to Pr. These values are similar to the value of 32o (or 148o) reported earlier for the rotation of the transition moment of "large" A. sativa phytochrome (∽ 120 kilodalton) isolated under conditions that did not preclude post homogenization proteolysis of the 124 kilodalton molecule.  相似文献   

9.
Abstract— It is generally accepted that phytochrome influences the photoperiodic induction of flowering through its interaction with the circadian clock mechanism. We have attempted to separate the effects of phytochrome on the clock mechanism from those that mediate flowering directly by examining a number of responses that are unrelated to flowering but are also regulated by the circadian clock. Gas exchange measurements of both CO2 and H20 vapor were monitored under light conditions (200 μmol m 2 s−1) where the addition of far-red energy is required for the maximal promotion of flowering. In addition, photosynthetic capacity and maximal transpiration rates were measured in plants grown under continuous dim (20 μmol m−2 S') light, with or without supplemental far-red, by exposing them briefly to saturating fluxes (1000 μmol m−2 s-l) of light. Net CO2 fixation was very weakly rhythmic in plants grown under both high and low light and this weak oscillation was completely suppressed by far-red light. Far-red also suppressed the rhythm in transpiration under high light, but the rhythm was immediately reinstated when the far-red light was removed. The phase of this rhythm was also reset with the next peak always occurring15–18 h after the far-red was turned off. When grown under dim light, the transpiration rhythm was not suppressed and the amplitude of the oscillation was more than doubled. Far-red light appears to interact with the rhythm in transpiration in a manner suggesting that the stomatal rhythm may be coupled to the same clock oscillator that regulates the flowering rhythm.  相似文献   

10.
Fluorescence-detected magnetic resonance of triplets in zero magnetic field (FDMR), fluorescence fading (FF) due to triplet-formation, both at 4.2 K, and prompt fluorescence decay kinetics (FDK) at room temperature have been measured for free pheophorbide- a (f-Pheo) and bound (b-Pheo) to a synthetic polypeptide (L-L ys -L-A la -L-A la )n, dissolved in dimethylformamide (DMF). Fluorescence decay kinetics measurements of f-Pheo in DMF yielded 1-5 ns lifetimes, for b-Pheo in DMF a ~ 50 ps decay-component was found emitting at 730–750 nm. Zero-field splitting parameters |D| and |E| of the lowest triplet state T1 were determined from FDMR spectra as (337 and 24) 10-4 cm-1 for f-Pheo and (359 and 25) 10-4 cm-1 for b-Pheo, both in DMF. Decay rate constants of the three spin levels of T1 of b-Pheo ( K x= 1200 50 s-1, k y= 440 25 s-1, k z= 80 5 s-1) and relative steady-state populations (Nx= 28 2%, Ny= 47 2%, Nz= 26 2%) determined from FF curves predict a fluorescence decrease at the D–E and D + E FDMR transitions, whereas experimentally a fluorescence increase is observed. The FDMR sign-inversion results from singlet-singlet energy transfer from b-Pheo monomers to their aggregates, followed by fast intersystem crossing to T1. These results indicate that aggregates are formed by two or more b-Pheo molecules at different positions on the folded polypeptide chain. This situation resembles that in chlorophyll-proteins, containing low-lying traps, resulting from interaction of chromophores with other chromophores and with the protein environment.  相似文献   

11.
Abstract— Etiolated turions of Spirodela polyrhiza are positively photoblastic and show a phytochrome-mediated low fiuence germination response. The far-red light (FR) reversibility decreased with the delay of FR irradiation (lag phase 1.06 ± 0.03 days after red light irradiation; half-maximal response 1.9 days). The action of the far-red-absorbing form of phytochrome (Pfr) was only realized by a germination response if exogenously applied Ca2+ was present. Calcium step-down (from 1 mM to 0.9 μ M Ca2+) and Ca2+ step-up (from 0.9 μ M to 1 m M Ca2+) experiments were carried out to determine the Ca2+-sensitive phase. There was no time gap between the two phases determined by the step-down and step-up experiments but a clear coincidence of both curves. Pulse treatments (24 h) with Ca2+ (1 m M ) showed the upper part of this common curve to represent the most Ca2+-sensitive phase. The Ca2+-sensitive phase was within the Pfr-requiring phase. After reversion of Pfr by FR pulses there was only a negligible response to the high Ca2+-concentration, independent of the delay between the red light (R) and FR pulses. These results are compatible with the assumption of Ca2+ acting as a second messenger of Pfr. However, the Ca2+-insensitivity in the first 12 h after the R pulse points against this hypothesis.  相似文献   

12.
Abstract— Much of the experimental data in the phytochrome literature has been obtained using a small-molecular-weight protein fragment. Hence, several properties of phototransformation were re-examined using large-molecular-weight rye phytochrome. The kinetics of phototransformation are first-order, both for the conversion of Pr to Pfr and for the reverse reaction. The quantum yield of phototransformation was found to be 0·28 mol Einstein-1 for the conversion of Pr to Pfr and 0·20 mol Einstein-1 for the conversion of Pfr to Pr. Intermediates in phototransformation were measured by cycling the pigment with high-intensity mixed red and far–red light. The difference spectrum of these intermediates between 367 and 575 nm was found to be similar to that previously reported for oat and pea phytochrome. Analysis of intermediate decay indicated complex kinetics and not a single first-order species. Transient absorbancy changes in the blue region of the spectrum upon actinic illumination could be attributed to differential rates of initial bleaching of the two forms of the pigment and a consequent alteration in the proportion of the two forms in the mixture until photostationary equilibrium is re-established.  相似文献   

13.
Abstract-Phytochrome regulates the unrolling of primary leaf sections from 8-day-old dark-grown wheat ( Triticum aeslivum L. cv. Arminda) seedlings. Red light (R)-stimulated unrolling of leaf sections pretreated in 1 m M ethylene-bis-(β-aminoethylether)- N,N,N',N' -tetraacetic acid (EGTA) if 1 m M CaCl2 was added during a 30 min treatment period including and following irradiation. Nifedipine at 1 μ M (a Ca2+-channel antagonist) applied 10 min before R prevented the R stimulation of leaf unrolling. The Ca2+-channel agonist Bay K-8644 (1 μ M ) and acetylcholine (ACh, 1 mY M ) stimulated unrolling of leaf sections prewashed in EGTA in darkness, if 1 m M CaCl2 was present in the medium during a 30 min treatment period. Acetylcholine also induced leaf unrolling in the absence of Ca2+ when 100 μ M NaCl was present in the medium. Apart from ACh, only carbamylcholine out of the choline derivatives tested was active in induction of leaf unrolling in the presence of 1 m M Ca2+. The ACh receptor antagonists, atropine (10 μ M ) AND D-tubocurarine (10 μ M ), nullified the ACh-induced Ca2+- and Na+-dependent leaf unrolling, respectively. Muscarine and nicotine, agonists of ACh, at 1 μ M stimulated leaf unrolling in the presence of Ca2+ and Na+, respectively. The ACh-induced Ca2+-dependent leaf unrolling was reduced by 1 μ M Nifedipine, 10 μ M Li+ and 10 μ M "calmodulin" inhibitor, trifluoperazine (TFP), whereas only TFP was active in the reduction of the Na+-dependent ACh-induced leaf unrolling response. It is proposed that leaf unrolling of dark-grown primary wheat leaves can be regulated by phytochrome and by activation of two different types of ACh receptors.  相似文献   

14.
Abstract—Calcium-sensitive photoproteins are "precharged bioluminescent proteins that are triggered to emit light by binding Ca2+ or certain other inorganic ions. Neither molecular oxygen nor any organic cofactor is required. The first such protein to be described was aequorin, and for various reasons that has been the one most widely studied. Photoproteins have been used as Ca2+-indicators both in vitro and in living cells. Their chief advantages for this are (1) ease of signal detection, (2) high sensitivity, (3) relative specificity for Ca2+, and (4) lack of toxicity. Difficulties in the experimental use of the photoproteins stem from (1) their one-time reactivity, (2) their large molecular size, (3) their scarcity, (4) the influence of experimental conditions on the sensitivity to Ca2+, (5) the nonlinearity of the relation between [Ca2+] and light intensity, and (6) the limited speed with which light intensity follows sudden changes in [Ca2+]. Photoproteins have now been used as intracellular calcium indicators in more than two dozen types of cells, and experience with the method is rapidly growing. They are also useful in the determination of calcium binding constants for other substances in vitro , and as models for studies of receptor-ligand interactions in general.  相似文献   

15.
Abstract— In view of the increasing attention to 1O2 (1Δg) participation in the photodynamic action, different types of genetic changes in Saccharomyces cerevisiae by acridine orange sensitization were compared with respect to the response to N3-, a well known quencher of 1O2. The induction of mitotic crossing over with respect to ade 2 locus and mitotic gene conversion at trp 5 locus were suppressed by the addition of N3- suggesting the involvement of 1O2 as a major intermediate. However, the induction of reverse mutation at ilv 1 was only slightly suppressed. These results may indicate that there are two types of photodynamic DNA damage; one is produced via 1O2 and the other via non-1O2 reaction pathway which lead to mitotic gene conversion and mitotic crossing over, and to mutation, respectively.  相似文献   

16.
Abstract— The growth and the decay of free radicals in illuminated keratin of five samples of wool have been studied by electron paramagnetic resonance. Illumination of the different samples varied from 10-9 to 10-7 Einstein cm-2s-1. The paramagnetic resonance spectra were measured both during illumination and during the decay of signals in the dark. The curves obtained during illumination gave two typical shapes: one approaching the apparent "saturation value", and the other passing through a maximum and then decreasing despite continuing illumination. All the above results are discussed in terms of only two prevalent free-radical species, whose growth and decay are determined for each species by a single intrinsic growth constant, and a single intrinsic decay constant. These four constants allow a reasonable fit for the complete behaviour of all five samples.  相似文献   

17.
Abstract— The radical cations and anions of diphenylhexatriene have been produced and characterized in homogenous and micellar solutions by pulse radiolysis and laser flash photolysis techniques. Both types of radical ions were formed in cyclohexane on pulse radiolysis. The radical cation was formed in dichloroethane on pulse radiolysis, and by two photon photoionization in ethanol, dichloroethane, and various micelles. Both radical ions have intense ( 105 M -1 cm-1) absorption peaks at600–650nm. The cation peak occurs at slightly shorter wavelengths than that of the anion.
In micelles and vesicles the radical anion of carotene was formed by electron transfer from ea– on pulse radiolysis. The radical cation was formed on pulse radiolysis of micellar solutions containing Br-2 as counterion, presumably by electron transfer to Br2-. The spectra agree with those of the radical cation and anion of carotene that have previously been obtained in homogenous solutions (Dawe and Land, 1975).
Electron transfer in micelles and vesicles from the radical anion of biphenyl to carotene and diphenylhexatriene, and from the radical anions of these to inorganic acceptors has been studied.  相似文献   

18.
Abstract A direct comparison of the photochemical interconversions between red (Pr-) and far-red (Pfr-) absorbing forms of highly-purified 124 kDa oat and rye phytochromes under identical experimental conditions was performed. In two different buffer systems at 5°C, the quantum yields for the Pr to Ptr and Pfr to Pr phototransformations under constant red and far-red illumination, φ r and φfr respectively, were determined to be 0.152-0.154 and 0.060-0.065 for oat preparations and 0.172-0.174 and 0.074-0.078 for rye preparations. These values as well as the wavelength dependence of the photoequilibrium produced under continuous illumination throughout the visible and near-ultraviolet spectrum were based on the absorption spectra of the two phytochrome preparations and revised molar absorption coefficients. The molar absorption coefficients were estimated by quantitative amino acid analysis and shown to be identical for the two monocot phytochromes (i.e. 132 mM −1 cm−1 at the red absorption maximum for the Pr form). Because these measurements were performed under identical experimental conditions, including buffer, temperature, light fluence rate, and instrumentation, the differences observed must reflect structural features inherent to the two different monocotyledonous phytochromes.  相似文献   

19.
Abstract— A novel method for the determination of singlet oxygen reaction rate constants is described and applied to studies of cyclohexadiene in methanol and gelatins in H2O and D2O. The technique uses tris (2,2'-bipyridine) ruthenium(II) dication (Ru(bipy)32+) as both singlet oxygen sensitizer and in situ oxygen concentration monitor during irradiation of sealed samples. Because of the high efficiency with which the luminescence of Ru(bipy)32+* can be detected, and the fact that emission lifetimes are used, the method offers some advantages over those previously described. The advantages and disadvantages of the method are discussed. A rate constant of 2.1 (±0.3) x 106 mol-1 dm3 s-1 has been determined for the reaction of 1O2 with cyclohexadiene in methanol. For two different photographic gelatins the sums of reaction and quenching rate constants are 2.0 (±0.4) x 106 and 3.1 (±2.0) x 105 mol-1 dm3 s-1; for swine skin gelatin this value is 3.9 (±2.4) × 105 mol-1 dm3 s-1. Chemical reaction, rather than physical quenching, is the dominant reaction route for gelatins and 1O2.  相似文献   

20.
Abstract— The action of phytochrome on appearance of NADH-dependent glutamate synthase (NADH-GOGAT) and ferredoxin-dependent glutamate synthase (Fd-GOGAT) was studied in the cotyledons of the mustard ( Sinapis alba L.) seedling. It was found that the [Pfr]-response curves are composed of two branches with two very different slopes (a1 a2). This explains the biphasic fiuence response curves reported previously. While a, is the same with both enzymes, a, is much higher in NADH-GOGAT than in Fd-GOGAT. However, the transition from the high (a1) to the low (a1) slope occurs at the same Pfr/Ptot ratio irrespective of the steepness of a1 While the appearance of NADH-GOGAT is very sensitive to small amounts of Prr (high a1), the response is not sensitive to the "High Irradiance Reaction" (HIR) of phytochrome. On the other hand, appearance of Fd-GOGAT (relatively low a1) exhibits the usual HIR. It is concluded that the presently available models of phytochrome action, including the dimeric model, are not adequate to account for the actual data. At present it appears that a multiplicity of primary actions of phytochrome exist, and that it is the availability of the primary reactant (X, 1,2,3) which determines transduction or non-transduction of the phytochrome signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号