首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiB2具有熔点高、硬度高和导热性、导电性及抗氧化性能都好等优点,在切削刀具、耐磨零件和某些特殊工况下使用的材料等方面的应用前景广阔.目前,含TiB2的Al2O3基陶瓷刀具材料已经开发出来并投入实际应用,但对其摩擦磨损特性研究却还不多.因此,采用热压烧结工艺制备了Al2O3/TiB2陶瓷刀具材料,在MM-200型摩擦磨损试验机上,对不同TiB2含量的增加,Al2O3/TiB2陶瓷材料与淬火45#钢配副的摩擦学性能作了试验研究.结果表明:TiB2的含量增加,Al2O3/TiB2陶瓷材料的耐磨性明显提高,而摩擦系数仅略有上升,在切削加工淬火45#钢的过程中,Al2O3/TiB2陶瓷刀具的抗磨能力比目前广泛使用的Al2O3/TiC陶瓷刀具的高1倍以上.Al2O3/TiB2陶瓷刀具材料的磨损机理主要是粘着、耕犁和脆性微脱落  相似文献   

2.
Si3N4基陶瓷刀具的摩擦磨损规律与机理分析   总被引:8,自引:3,他引:8  
考察了以Si3N4基陶瓷刀具分别切削45#钢和1Cr18Ni9Ti奥氏体不锈钢时的耐磨性能及其使用寿命,采用红外热像仪测定了这种刀具有不同切削速度下切削温度的分布,并对刀具的磨损表面形貌和切屑进行了扫描电子显微镜和X射线能量色散谱分析,提出了Si3N4基陶瓷刀具的磨损机理及影响因素。在最佳切削速度条件下,以这种陶瓷刀具切削45#钢时的使用寿命约是切削1Cr18Ni9Ti不锈钢时的9.5倍,而以其切  相似文献   

3.
离心铸造Al—Si—Ti合金梯度功能材料的摩擦学特性   总被引:1,自引:2,他引:1  
采用离心铸造工艺使Al-Si-Ti合金在凝固过程中析出的富Ti相(Si2Ti型和Al3Ti型)在合金表面层聚集而制得梯度功能材料。测定了这种材料的硬度并对其摩擦学性能进行了试验研究。结果表明:在30-350℃温度范围内,材料表层(复合层)的硬度比内部基体的高,在以氧化和占着磨损为主的前期磨损过程中,由于富Ti相聚集的复合层硬度高,耐热性和抗氧化性优良,复合层的磨损率远比内部基体的低;在进入稳定摩擦  相似文献   

4.
陶瓷刀具干切削等温淬火球铁(ADI)的磨损机理研究   总被引:10,自引:2,他引:8  
采用陶瓷刀具(CC650)和YG6硬质合金刀具对等温淬火球墨铸铁(以下简称ADI)材料进行干式精车切削试验, 采用带有X射线能谱分析的扫描电子显微镜观察刀具磨损表面形貌, 用能谱仪对刀具磨损微区和工件表面成分进行分析, 用X射线衍射仪对刀具、 ADI材料和切屑等试样进行物相分析, 研究陶瓷刀具磨损形态及其磨损机理. 结果表明: 刀具磨损的主要形式为磨粒磨损、粘着磨损、 扩散磨损及微崩和脱落; ADI材料中含有微量Al和Ti元素, 在较高速度下切削ADI材料时, 刀具与工件之间的亲和性增加而导致粘着磨损; 在刀具前刀面平均切削温度大于800 ℃以上时,ADI材料中的元素Fe和Si扩散到刀面,刀具中的元素Al和Ti扩散到ADI材料表面,从而加剧刀具的磨损;切削后ADI材料表面出现的Al2O3相及切屑中的FeCr相等高硬度化合物颗粒是造成CC650刀具磨粒磨损的主要原因.  相似文献   

5.
高速切削刀具磨损表面形态研究   总被引:32,自引:8,他引:32  
刘战强  艾兴 《摩擦学学报》2002,22(6):468-471
对立方氮化硼刀具、陶瓷刀具、涂层刀具及超细晶粒硬质合金刀具高速铣削灰铸铁、调质45#钢和淬硬45#钢时的刀具磨损形态及其磨损机理进行观察和分析.结果表明:在高速切削条件下,不同刀具材料与工件材料匹配时的刀具磨损形态主要表现为前刀面磨损、后刀面磨损、微崩刃、剥落和破损等;高速切削时刀具的前刀面磨损形态不同于常速切削时的磨损形态,即磨损不表现为月牙洼的形式,而是表现为切削刃处磨损最大的斜面磨损形式,前刀面磨损区域随切削速度提高而减小,但磨损深度增大.研究结果可用于指导高速切削刀具材料的设计、合理选用及刀具磨损控制.  相似文献   

6.
通过切削对比试验,考察了分别用离子束增强沉积法和离子镀法镀覆TiN膜的硬质合金刀具和无镀层的同种硬质合金刀具的抗切削损伤性能.结果表明,在给定的试验条件下,有离子束增强沉积TiN膜硬质合金刀具的切削距离远比无镀层刀具的长,也比有离子镀TiN膜刀具的长,其前面和后面的损伤都很小.这是离子束增强沉积过程中各种参数可以分别调节,膜层质量易于控制,能够形成致密度高且与基体结合力强的硬质薄膜的结果.刀具切削损伤的原因主要有磨损和脆性损伤,这都与刀具材料同被切削金属产生的粘着有关  相似文献   

7.
采用涂层硬质合金刀具和细晶粒硬质合金刀具对超高强度合金钢(硬度>50HRC、抗拉强度σb>1.4 GPa)和马氏体不锈钢(硬度>30HRC)等难加工材料进行了干式高速端面铣削试验;选择刀具寿命作为刀具切削性能的评价指标,利用X射线能谱仪和扫描电子显微镜分析了硬质合金刀具前刀面的磨损形态、磨损机理以及刀具的切削性能.结果表明:在难加工材料的高速铣削过程中,涂层硬质合金刀具主要失效形式为前刀面磨损,细晶粒硬质合金刀具主要失效形式为前刀面月牙洼磨损与剥落;2种刀具的主要磨损机理均为扩散磨损和氧化磨损.对细晶粒硬质合金刀具而言,在考虑刀具材料与工件材料适配性的基础上,必须利用合理的刃口强化处理来降低磨损初期的刃口微崩刃倾向.  相似文献   

8.
PCBN刀具切削GH706磨损特征研究   总被引:1,自引:1,他引:0  
本文中采用PCBN刀具对镍基高温合金GH706车削试验研究刀具磨损并对比刀具材料.首先观察PCBN刀具的磨损形貌,根据其位置、形态等特点进行分类,分别为主切削刃边缘崩刃、主切削刃微崩刃及后刀面磨损、主副切削刃交界后刀面磨损、副切削刃微崩刃及副后刀面磨损等,从而将PCBN刀具磨损形式进行全新的定义,并根据刀具、工件属性以及切削过程刀-屑-工件相互作用特点,分析了不同类型磨损形成的原因.然后研究刀具磨损形貌随切削进程的变化规律,揭示了PCBN刀具切削GH706的失效历程.最后对比了5种不同PCBN材料的刀具的前、后刀面磨损状态,得到了CBN含量、结合剂种类对刀具磨损的影响规律,为高效切削镍基高温合金用PCBN刀具设计及应用提供技术指导.  相似文献   

9.
切削刀具多层涂层的力学特性和耐磨性   总被引:2,自引:1,他引:1  
利用纳米硬度计研究了硬质合金基体上CVD沉积TiN,TIN/Ti(C,N)/TiC、TiN/TiN/Ti(C,N)/TiC/Ti(C,N)/TiC和TiN/Ti(C,N)/Ti(C,N)/TiC/Ti(C,N)/TiC等4种涂层的硬度和断裂韧性。讨论了载荷与压入深度关系曲线上的台阶和载荷与压入深度平方关系曲线上的直线段与涂层的断裂失效的界面失效的关系,指出可用临界载荷pt和pi来分别描述涂层的断裂  相似文献   

10.
用粉末冶金法制备了Ni-Cr-Mo-Al-Ti-B-MoS2系宽温度范围自澜残杀则试了合金机械性能及其在室温600℃范围内的摩擦磨损性能,同时还了其耐磨机理。研究结果表明,MoS2质量分数为10%的合金具有较好的机械和摩擦磨损综合性能。该合金主要由Ni基固溶体、Ni3Al、Ni3(Al,Ti)、不定比化合物CrxSy、MoS2和Mo2S3等相组成,在室温至300℃范围内摩擦表面形成含硫化合物复合膜  相似文献   

11.
使用Al2O3基陶瓷刀具对300M超高强度钢进行了干切削试验,采用电子扫描显微镜(SEM)观察刀具的磨损形貌,并通过能谱分析仪(EDS)测量了陶瓷刀具磨损微区的各元素含量,分析了陶瓷刀具的主要磨损机理.结果表明:陶瓷刀具磨损的主要机理为粘结磨损、磨粒磨损和氧化磨损.粘结磨损主要发生在前刀面上,且受刀具材料和工件材料接触点应力状态的影响.刀具前、后刀面的磨损边缘区易发生氧化磨损.  相似文献   

12.
离子束辅助沉积是近几年发展起来的一种将离子注入与薄膜沉积融为一体的材料表面改性新技术。利用Al+N+或Ti+N+离子束辅助沉积对工业纯铁进行了表面改性处理,并且就其摩擦学性能与未经表面改性处理之纯铁试样的作了对比试验研究,同时还利用俄歇电子能谱仪、掠角X射线衍射仪和扫描电子显微镜等分析测试手段对离子束改性层的成分深度分布和微观组织结构,以及磨痕的表面形貌和元素面分布进行了分析。结果表明,Al+N+或Ti+N+离子束辅助沉积可以在纯铁表面形成Fe4N、Fe3Al或Fe2N、Fe2Ti等强化相,因而使材料的表层显微硬度分别提高了21.5%和58.4%,稳态摩擦下的摩擦系数分别降低约80%和83%,平均磨损量分别降低约71%和86%;磨损形式主要由纯铁严重的粘着磨损转化为轻微的氧化磨损。  相似文献   

13.
孔金星  胡锟  何宁  赵威 《摩擦学学报》2015,35(4):378-385
合适的冷却润滑方式是改善切削摩擦,降低切削温度和切削力,提高刀具寿命的关键技术.采用干切、水冷、微量润滑(Minimum quantity lubrication,MQL)以及菜籽油润滑等四种方式进行了不同工艺参数下纯铁材料的车削试验,研究了冷却润滑方式对纯铁车削刀具磨损的影响机理.结果表明:纯铁车削时刀具磨损形态以主、副切削刃处的沟槽磨损和后刀面磨损为主,前刀面上黏结有工件材料并形成积屑瘤;MQL条件下的刀具寿命最长,而水冷时最小;扩散磨损、氧化磨损和黏结磨损是纯铁车削刀具的主要磨损机理;四种冷却润滑方式下切削力、前刀面与切屑间平均摩擦系数和表面显微硬度的显著差异是造成刀具寿命明显不同的根本原因.  相似文献   

14.
Al2O3—TiB2—SiCw复合陶瓷材料摩擦磨损特性的试验研究   总被引:2,自引:1,他引:2  
邓建新  艾兴 《摩擦学学报》1997,17(4):289-294
采用热压地以不同比例的SiC晶须(SiCw)制行了Al2O3-TiB2-SiCw三组分复合陶瓷材料,并在MM-200型试验机上对其摩擦磨损行为及其磨损机理作了试验研究。结果表明,添加SiC晶须既能提高材料的断裂韧性,又能明显改善材料的耐磨性能。由于SiC晶须在热压后主要分布于热压方向垂直的平面上,因而在不同的表面上有不同的耐磨性,这些陶瓷材料表面的耐磨性能都随着θ角(表明面热压方向的夹角)的增大而  相似文献   

15.
首先建立了TiCN涂层硬质合金刀具基体材料(WC)的离散元模型,根据单轴压缩、三点弯曲以及断裂韧性等数值试验方法校准了基体材料离散元模型的微观参数,然后采用划痕法校准了基体与涂层的界面结合强度。根据Merchant切削模型,建立了涂层刀具切削过程中的刀-屑接触模型,通过对切屑施加周期性边界条件来模拟实际的切削加工过程;模拟了涂层刀具加工过程中的裂纹扩展和破坏情况,并预测了切削加工用量对涂层裂纹扩展及破坏的影响。  相似文献   

16.
二氧化钛薄膜材料的制备及其摩擦学研究   总被引:11,自引:5,他引:11  
利用溶胶-凝胶法(Sol-gel)制备了单层及双层TiO2薄膜材料,分析结果表明所制薄膜主要由非晶TiO2纳米颗粒组成,单层及双层TiO2与钢球及Si3N4陶瓷球对摩在轻载荷(3N)下具有良好的减摩与抗磨性能,与钢球对摩时失效循环次数分别为376和1856,与陶瓷球对摩时失效循环次数分别为2280和2343,玻璃基片主要发生脆性裂纹及严重的磨粒磨损,TiO2薄膜则发生塑性变形及轻微磨粒磨损。  相似文献   

17.
单晶金刚石车刀在超精密单点切削中的磨损分析   总被引:1,自引:2,他引:1  
通过金刚石单点切削试验 ,考察了对无氧铜、铝合金和单晶硅进行超精密单点切削时金刚石刀具的磨损行为 ;分析了刀具磨损对被加工材料表面粗糙度的影响 ;并应用光学显微镜和原子力显微镜对刀具的不同磨损形态进行了宏观和微观观测 ;结合热力学、化学反应磨损和机械磨损的分析方法 ,对金刚石车刀在切削 3种材料时的不同磨损机理进行了实验研究和理论分析 .结果表明 ,为了减轻甚至消除金刚石刀具的磨损 ,在切削铜时应使用少氧或无氧的切削液 ;在切削铝时应在刀具表面涂覆润滑剂或隔离膜 ;在切削单晶硅时应保证低温和少氧环境 .同时应使用小切深和小进给量  相似文献   

18.
Ni-Cr-Mo-Al-Ti-B-MoS2系合金高温摩擦学特性的研究   总被引:2,自引:0,他引:2  
用粉末冶金法制备了Ni-Cr-Mo-Al-Ti-B-MoS2系宽温度范围自润滑合金材料,测试了合金机械性能及其在室温至600 ℃范围内的摩擦磨损性能,同时还探讨了其耐磨机理.研究结果表明,MoS2 质量分数为10% 的合金具有较好的机械和摩擦磨损综合性能.该合金主要由Ni基固溶体、Ni3Al、Ni3(Al,Ti)、不定比化合物CrxSy、MoS2 和Mo2S3 等相组成,在室温至300 ℃范围内摩擦表面形成含硫化合物复合膜而起润滑作用,高温摩擦时承载表面形成釉质层,次表层形成氧化层,其硬度比合金基体高,这是合金具有良好高温耐磨性的基础.高温下摩擦表面及磨屑中的氧化物及残余硫化物的协同作用使摩擦系数进一步降低.  相似文献   

19.
WS2纳米微粒LB膜的摩擦学性能研究   总被引:12,自引:7,他引:12  
研究了铝基体上沉积的二十酸、二烷基二硫代磷酸及由其修饰的WS2纳米微粒LB膜的摩擦学性能,并且利用红外显微镜分析了LB膜在摩擦过程中的结构变化.结果表明:在给定的试验条件下,几种LB膜的摩擦系数都远比铝的0.70~0.76低,耐磨性能以二烷基二硫代磷酸修饰的WS2纳米微粒LB膜的最好,几乎比二十酸LB膜的高20倍,这是由于WS2纳米微粒起着支承负荷作用的缘故;二烷基二硫代磷酸锌及由其修饰的WS2纳米微粒LB膜在摩擦过程中发生了向偶件表面的材料转移,同时在摩擦力的作用下膜发生了摩擦化学反应或变化  相似文献   

20.
研究了Si3N4基陶瓷和Ti(CN)基陶瓷分别与1Cr18Ni9Ti不锈钢在干摩擦条件下对摩时的磨损行为,并且通过销-盘磨损试验和磨损表面形貌分析等,提出了这2种陶瓷的磨损机理:Si3N4基陶瓷主要是在磨损表面发生偶件材料1Cr18Ni9Ti粘着层的粘着与剥落,同时陶瓷中的Si向粘着层发生扩散转移,并在粘着层表面下20~30μm深度范围内产生裂纹和断裂而导致磨损;Ti(CN)基陶瓷在发生粘着层的粘着与剥落的同时,还由于摩擦温度很高引起陶瓷表面熔化,熔融状的陶瓷被挤走或冷凝收缩产生裂纹和断裂而导致磨损  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号