首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
扩散处理对氮离子注入纯铁摩擦学性能的影响   总被引:2,自引:1,他引:2  
研究了N+注入纯铁分别在150℃和250℃进行扩散退火后的摩擦磨损性能,并根据AES和SEM分析结果对磨损机理进行了讨论.结果表明,经扩散处理后显微硬度提高,摩擦系数降低,耐磨性显著提高.其原因在于扩散处理后氮化物和碳化物析出,产生显著的弥散强化.  相似文献   

2.
铝合金等离子体淹没氮离子注入层的摩擦学性能研究   总被引:5,自引:2,他引:5  
用等离子体淹没离子注入技术对LY12和LD10铝合金表面进行氮离子注入。用俄歇电子能谱分析离子注入层中氮的浓度分布,在此基础上进行了摩擦磨损试验。用扫描电观察和分析磨损表面特征。研究表明:氮离子注入铝合金形成细小,弥散的硬质AlN析出相,铝合金表层的显微硬度增加,摩擦系数降低;耐磨性随着注入剂量和电压的增加而提高。磨损机制主要为粘着磨损,随离子注入剂量的增加,粘着磨损趋行减轻。  相似文献   

3.
根据大量文献调查结果,从影响陶瓷材料摩擦磨损性能的内因(主要包括陶瓷材料的力学性能及微观结构)和外因(主要包括载荷、速度、温度、环境气氛及偶件的化学活性等)出发,讨论了陶瓷材料的摩擦磨损行为及机制,以促进正确选择、设计和使用陶瓷材料,在对陶瓷摩擦学研究现状分析评论的基础上,提出了陶瓷摩擦磨损今后研究工作中值得重视的发展方向.  相似文献   

4.
鲁光沅  刘伦 《摩擦学学报》1998,18(3):232-237
对12年前经离子注入处理后的GCr15轴承钢表面耐磨性能的时间效应进行了探讨。发现离子注入材料的改性效果存在时间效应性。利用AES和X射线衍射分析发现,掺杂原子及材料表面吸附的氧原子的多元迁移和硬质相的生成是造成离子注入材料改性时效的原因。  相似文献   

5.
六种典型表面强化层的摩擦学特性研究   总被引:3,自引:3,他引:3  
作者从摩擦学角度出发,对PVD TiN等6种典型表面强化层的摩擦学性能进行了系统的试验研究。结果表明,几种表面强化层各有其最佳的应用范围和各自的磨损机理。不同强化层的承载能力不同,失效形式亦各异,配磨材料对其摩擦学特性有明显的影响,最佳强化层的耐磨性不代表配副系统的最佳耐磨性。  相似文献   

6.
表面改性技术在微动摩擦学领域中的应用   总被引:12,自引:5,他引:12  
对近年来国内外在采用表面改性技术改善材料的抗微动损伤性能方面的研究和进展作了简要的综述。分析了各种表面改性层在微动摩擦学中的应用和作用机制。指出采用多种表面改性手段,如表面机械强化,表面化学处理及表面涂覆等可不同程度地提高材料的抗微动损伤性能,延长零件的服役寿命。  相似文献   

7.
研究了铝合金LY12等离子体基氮及钛离子注入层的摩擦磨损性能。用X射线光电子能谱和小掠射角X射线衍射对改性层中各元素分布及相组成进行了分析。用扫描电子显微镜对注入层形貌进行了观察和分析。结果表明:注入层由TiN、α-Ti、AlN、Al2O3和TiO2等相组成;注入后试样硬度提高了1倍以上;在低载荷下,摩擦系数处于0.10-0.14之间,注入层寿命提高了12倍以上,耐磨性提高了100倍以上;随着滑动载中增加,摩擦系数有所增大,而磨性有所降低;在注入层被磨穿以前以剥层磨损为主并伴有轻微的划伤,在注入层被磨穿以后以粘着磨损为主并伴有犁沟和粘着转移。注入改性层具有适当的梯度结构是提高铝事金表面硬度和耐磨性的主要原因。  相似文献   

8.
电磁制动和电磁弹射是典型磁场条件下的摩擦学系统.相对湿度对其摩擦学性能和摩擦稳定性有重要影响.本文中研究了湿度对磁场下45钢自配副的摩擦磨损性能的影响,通过摩擦表面形貌演化分析了摩擦机理和磨损机制的转变,利用能量色散光谱仪(EDS)和X射线光电子能谱仪(XPS)表征了摩擦表面铁元素的氧化程度和氧化形式.结果表明:随着湿度增加,磁场下45钢自配副的摩擦系数单调增加,磨损率先增加后减少,30%RH为转变点;10%~70%RH范围内随湿度增加,摩擦表面的氧化程度升高,氧铁比变化率下降,表面Fe2+占比增大,OH-占比减小;70%RH时铁氧化物的水合物析出,氧的存在形式由OH-向FeOx·H2O转化.  相似文献   

9.
对铝合金LY12进行等离子体基氮离子注入后再进行原位碳注入,从而在铝合金表面形成氮化铝(A1N)/类金刚石碳膜(DLC)改性层,考察了改性层的硬度及其在不同载荷下的滑动摩擦磨损特性;用X射线光电子能谱仪和小掠射角X射线衍射仪分析了A1N/DLC改性层的成分及相结构,用激光Raman光谱仪分析了表面单一碳层及磨痕的结构,结果表明:A1N/DLC改性层总厚度达800nm,最表层为厚400nm的DLC薄膜,过渡层主要由A14C3、β-C3N4、Al2O3及AlN等组成,注氮层由Al2O3和lN等组成;表面纳米硬度可达17.4GPa,比LY12的硬度高近10倍;在低载荷下,改性层的耐磨寿命与LY12合金相比提高了约20倍,摩擦系数降低了3-5倍,耐磨性提高了近170倍;随着滑动载荷的增加,其耐磨寿命和摩擦系数逐渐减小,而高的承载能力得以保持,DLC薄膜的耐磨减摩作用、过渡层及注氮层的支撑作用以及DLC薄膜在摩擦磨损过程中的石墨化作用是摩擦学性能提高的主要原因。  相似文献   

10.
采用激光复合工程技术对Ti6Al4V基体表面进行强化耐磨处理,首先在Ti6Al4V合金表面进行激光氮化[Ti(N)]和氮氧化[Ti(N,O)]处理,然后在纯氩气气氛中分别对Ti(N)层和Ti(N,O)层进行激光重熔处理,制备了组织分布更为均匀的重熔氮化层[Re-Ti(N)]和重熔氮氧化层[Re-Ti(N,O)]. 组织结构分析揭示了Re-Ti(N)层主要由富氮αˊ-Ti和TiNx组成,而Re-Ti(N,O)层则主要由富氧αˊ-Ti和TiNxOy组成. 相对于Ti6Al4V基体,Re-Ti(N)层和Re-Ti(N,O)层的硬度、弹性模量和磨损量降低了2倍以上,然而激光复合处理前后材料均表现出较大的摩擦系数. 相对于Re-Ti(N)层,氧原子的加入,不仅能够有效细化组织和提升强韧度,而且显著抑制了摩擦界面的黏着磨损. 通过磨屑结构分析进一步验证了基体黏着磨损机制和重熔改性层磨粒磨损机制.   相似文献   

11.
塑料表面改性对其摩擦学性能影响   总被引:4,自引:1,他引:3  
论述了采用离子注入、气相沉积、激光熔敷和等离子喷涂等表面改善塑料摩擦学性能方面的研究现状和进展,分析了塑料表面离子注入改性的机理,指出采用合适的表面改性工艺可有效地提高塑料表面的硬度并进而提高其耐磨性,从而进一步延长塑料的使用寿命 ,扩大其段А  相似文献   

12.
离子束辅助沉积是近几年发展起来的一种将离子注入与薄膜沉积融为一体的材料表面改性新技术。利用Al+N+或Ti+N+离子束辅助沉积对工业纯铁进行了表面改性处理,并且就其摩擦学性能与未经表面改性处理之纯铁试样的作了对比试验研究,同时还利用俄歇电子能谱仪、掠角X射线衍射仪和扫描电子显微镜等分析测试手段对离子束改性层的成分深度分布和微观组织结构,以及磨痕的表面形貌和元素面分布进行了分析。结果表明,Al+N+或Ti+N+离子束辅助沉积可以在纯铁表面形成Fe4N、Fe3Al或Fe2N、Fe2Ti等强化相,因而使材料的表层显微硬度分别提高了21.5%和58.4%,稳态摩擦下的摩擦系数分别降低约80%和83%,平均磨损量分别降低约71%和86%;磨损形式主要由纯铁严重的粘着磨损转化为轻微的氧化磨损。  相似文献   

13.
环氧树脂表面金属离子注入改性层的摩擦学性能研究   总被引:4,自引:0,他引:4  
以 3种剂量 (2× 10 1 5 ions/cm2 、1× 10 1 6 ions/cm2 及 1× 10 1 7ions/cm2 )分别对环氧树脂进行 Al、Ti和 Fe离子注入处理 ,采用 MM- 2 0 0型摩擦磨损试验机考察了注入改性层的摩擦学性能 ,采用傅立叶变换红外光谱仪分析离子注入前后环氧树脂表面基团及其键合方式 .结果表明 :3种金属离子注入处理后环氧树脂的耐磨性均显著提高 ,摩擦系数降低 ;其中 Al离子注入处理的摩擦学改性效果最好 ;对应于环氧树脂最小磨损体积损失的不同金属离子的注入剂量亦不同 .红外光谱分析结果表明 :经 Al离子注入后 ,环氧树脂表面保持微量的吸附水 ;同时其表面发生了脱氢及氧化等作用 ,形成了新的化学基团 ,且其立体网状交联程度提高 ,这使得离子注入处理后环氧树脂的减摩耐磨性能得以明显改善 .  相似文献   

14.
离子束表面改性及其在摩擦学中的应用   总被引:2,自引:2,他引:2  
本文对离子束表面改性的各种方法和技术水平及其在摩擦学中的应用进行了综述,讨论了为使这种技术更加广泛地应用于实际摩擦学体系还必须研究的一些问题。大量文献资料表明,离子注入是改善材料摩擦学性能的一种有效方法。离子束辅助涂层是新近发展起来的一种离子束表面改性技术,包括离子束增强沉积或离子束辅助沉积、离子束混合和离子束反冲注入。利用它可以制得0.05到几个微米厚的涂层。由于界面的相互扩散混合,离子束辅助涂层能更强地与底材结合,并且常比物理或化学气相沉积的涂层更密实。作者认为,离子束技术今后将在两个相关领域中发展,即直接的离子注入和离子辅助涂层,并且指出离子补助涂层技术将拓宽离子束技术在摩擦学中的应用范围。  相似文献   

15.
对 YL12铝合金进行了铁离子注入 ,用俄歇电子能谱 (AES)分析了注入层剖面元素分布 ,同时考察了注入层的表面显微硬度、脆性和在干摩擦条件下的摩擦磨损特性 .采用扫描电子显微镜 (SEM)对磨痕表面形貌进行了观察分析 .研究结果表明 :铁离子在注入层中沿剖面呈高斯分布 ;注入层表面显微硬度有所增加 ,摩擦系数显著降低 ;当注入剂量为 7× 10 1 6 Fe / cm2 时 ,注入试样的耐磨性为未注入试样的 3 80 0倍 ;随着铁离子注入剂量的增大试样的表面脆性增加 ,耐磨性降低 ;注入前材料的磨损机制以粘着磨损和磨粒磨损为主 ,注入后磨损机制则以氧化磨损为主  相似文献   

16.
Co+C离子注入层的摩擦磨损行为研究   总被引:1,自引:1,他引:0  
采用金属蒸气真空弧放电离子源在奥氏体不锈钢上进行Co C离子的双注入与同时注入,研究了Co C双注入层和同时注入层元素的成分深度分布及其摩擦磨损行为.结果表明:双注入和同时注入方式均能够在不锈钢表面产生1个Co与C共存区域,注入离子浓度范围宽化,强化范围增加;双注入和同时注入均能够提高不锈钢的表面硬度,降低其表面的摩擦系数,提高其耐磨性;采用大剂量同时注入方式改善摩擦磨损性能的效果优于双注入方式.  相似文献   

17.
本文根据摩擦学原理,采用动态磨损模拟试验和表面微观分析的研究方法考察了冲击载荷、温度、燃烧气氛等磨损工况对气门-气门座摩擦磨损特性的影响,指出要改善气门-气门座的摩擦磨损特性,就必须提高材料表面层在高温下的力学性能和抗蠕变及抗腐蚀的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号