首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Miniemulsion polymerisations of styrene and butyl methacrylate were carried out in order to study mass transfer during the reaction. An in-line Attenuated Total Reflectance–Fourier Transform Infrared (ATR–FTIR) probe was used to follow the reactions, and the collected spectra were used to identify the different species that appeared and disappeared during polymerisation. The results show that the droplets were completely compartmentalized during the reaction, and that even when blends of droplets with different composition were polymerised together, no detectable levels of copolymer were formed. To cite this article: K. Ouzineb et al., C. R. Chimie 6 (2003).  相似文献   

2.
The polymerization of styrene in o/w microemulsions stabilized with dodecyltrimethylammonium bromide (DTAB) with or without cosurfactant (n-butanol, n-hexanol or n-octanol) is examined here. The addition of a cosurfactant enhances the one-phase region in the order: n-butanol > n-hexanol > n-octanol. The kinetics of polymerization slows down in the presence of the alcohol. With the alcohol, the molar masses increase, but no particular trend was noticed on particle size of the lattices. However, by changing the surfactant counter-ion to chloride, alcohol effects on the kinetics almost vanish. Possible explanations to these results are given here. To cite this article: J.E. Puig et al., C. R. Chimie 6 (2003).  相似文献   

3.
Mini-emulsion polymerisation of styrene or methylmethacrylate, initiated with ammonium persulphate, have been carried out, in the presence of hexadecane or of polymethylmethacrylate as hydrophobic costabilizer, and the simple hemiester of linear dodecyl alcohol and maleic anhydride, or polymerisable surfactants (surfmers) derived from the condensation of succinic anhydride and either hydroxy propylmethacrylate (MAES), or hydroxyethylmethacrylate (ABS). While the pure surfmers have not so good surface activity, from surface tension measurements, stable mini-emulsion droplets are obtained using a mixture with low amounts of SDS, which have diameters of about 100–200 nm, which remain stable upon polymerisation. Most of the surfmers remain grafted onto the particle surface, thus conferring to these particles strong stability in the various tests. However, due to the high water solubility of the surfmers, another part remains in the serum as unconverted monomer or water-soluble polymers. To cite this article: A. Guyot et al., C.R. Chimie 6 (2003).  相似文献   

4.
A comprehensive investigation of aqueous microemulsion polymerization of butyl acrylate at high surfactant concentrations by means of reaction calorimetry and dynamic light scattering revealed unexpected results with regard to polymerization kinetics and colloidal properties of the final latexes. Particularly, with increasing surfactant concentrations, a decrease in the overall rate of polymerization accompanied by an increasing incubation time of the polymerization and increasing average particle sizes in the final latexes has been observed. Based on reviewing former results on microemulsions and microemulsion polymerizations published in the open literature and the presentation of new experimental results an attempt is made to explain the experimental results consistently with a particle nucleation mechanism based on the classical nucleation theory. To cite this article: K. Tauer et al., C. R. Chimie 6 (2003).  相似文献   

5.
A series of new polymerizable non-ionic and ionic surfactants (surfmers) with amides groups on both sides of the C=C double bonds have been prepared upon reaction of maleic isoimide carrying a long alkyl chain (or a benzyl group) with a hydrophilic amine derivative. Their critical micellar concentration (CMC) was measured with a surface tensiometer. They have been engaged in batch emulsion polymerization of styrene, and semi-batch seeded copolymerization of styrene and butyl acrylate, giving stable latexes during the polymerization process, and upon extraction with ethanol, showing a high rate of incorporation at the particle surface. However these surfmers do not confer good steric stabilization properties, which may be expected from the use of non-ionic surfactants. To cite this article: I. Klimenkovs et al., C. R. Chimie 6 (2003).  相似文献   

6.
The surface-active, chain transfer agent (‘transurf’) sodium ω-mercapto-decane sulfonate, SMDSo, was synthesized, purified, and its interfacial properties determined. The compound acted normally in styrene emulsion polymerization to produce extremely stable colloids containing only sulfonate ionic surface functional groups. It was then used to control the surface charge density of a model polystyrene colloid by means of seeded emulsion polymerization. Surface charge could thus be increased 16-fold over that of the seed particles, and was due solely to sulfonate groups introduced by the SMDSo. Unlike most conventional emulsion polymerizations, this technique allows one to control surface chemistry independently of particle size. To cite this article: C.C. Fifield, R.M. Fitch, C. R. Chimie 6 (2003).  相似文献   

7.
Recent developments in nitroxide-mediated polymerizations conducted in emulsion and miniemulsion have advanced the field across a range of both experimental and theoretical fronts. This article reviews progress in bicomponent initiating systems (including use of camphorsulfonic acid to enhance rate), unimolecular initiating systems, miniemulsions not requiring the use of volatile costabilizers, polymerization of acrylates, mathematical modeling and simulation, and theoretical understanding with regards to issues such as compartmentalization, preservation of polymer chain livingness, the role of aqueous phase kinetics and phase partitioning. These topics are discussed and analyzed to present an integrated portrait of the current status of nitroxide-mediated polymerizations in emulsion/miniemulsion and to identify the most pressing concerns, issues, and opportunities. To cite this article: M.F. Cunningham, C. R. Chimie 6 (2003).  相似文献   

8.
A series of heterogeneous latexes having stage ratios of 40:60 between the first and second stage polymers were prepared by emulsion polymerization. The first-stage polymers were non-polar S-BuA with Tgs ranging from + 100 °C to + 20 °C and the second stage polymer was polar MMA–BuA–MAA having a Tg of 20 °C. The latex particle morphologies were studied using TEM and the thermomechanical properties of the resulting latex films were studied with DSC and DMA. Calculated diffusion rates for propagating species during the reactions were correlated to the observed morphologies and to the amount of interphase in the latex particles. To cite this article: O.J. Karlsson et al., C. R. Chimie 6 (2003).  相似文献   

9.
We describe in this work the copolymerization reaction of 3-trimethoxysilyl propyl methacrylate (MPS) with styrene (Styr.) and n-butyl acrylate (BuA) monomers through emulsion polymerization. The so-produced hybrid copolymer (P(BuA-co-MPS)) and terpolymer (P(Styr-co-BuA-co-MPS)) latexes were cast into films that displayed a good optical transparency. The copolymers microstructure in the films was characterized by FTIR, 13C and 29Si solid state NMR spectroscopies, and was found to be highly dependent on parameters such as the monomer feed composition, the suspension pH and the silane addition profile. The films obtained from the hybrid latexes showed improved dynamic mechanical properties indicating that a reinforcing organo-mineral network had formed in the composite materials. The dynamic modulus of the hybrids increased with increasing silane contents while, concurrently, the tan δ peak shifted to higher temperatures, broadened and decreased in intensity. To cite this article: S. Vitry et al., C. R. Chimie 6 (2003).  相似文献   

10.
The particle size distribution polydispersities of a number of macro- and mini-emulsion latexes are reported. In cases where the macro-emulsion and mini-emulsions were produced under very nearly identical conditions, the mini-emulsion will have a polydispersity equal to, or only very slightly greater than, the equivalent macro-emulsion. To cite this article: K. Landfester et al., C. R. Chimie 6 (2003).  相似文献   

11.
Poly(ethylene oxide) (PEO) macromonomers with α-p-vinylphenylalkyl (propyl, pentyl, and hexyl) and ω-hydroxy end groups were applied to emulsion and dispersion polymerization of styrene as reactive emulsifiers and dispersants in water and in methanol-water mixture (9:1 v/v), respectively. Nearly monodisperse microspheres of submicron to micron size were obtained. Particle size in the emulsion system was one or half order of magnitude smaller than that in the dispersion system, while in both systems the size decreased approximately according to minus one half power of the macromonomer concentration in weight. The particle size was substantially independent on the PEO chain length and also on the spacer alkyl chain length of the α-polymerizing end group. The total weight of the PEO chains incorporated by copolymerization into the particle surfaces (shells), relative to that of styrene polymerized into the particle cores, appears to be a key factor for controlling the particle size. To cite this article: K. Landfester et al., C. R. Chimie 6 (2003).  相似文献   

12.
This paper deals with the degradation processes occurring during polymer processing. Some general aspects of polymer processing are first recalled. Then, oxidation mechanisms and kinetics are evoked and the main processing methods are compared from this point of view. Temperature–molar mass maps allow to define a processability window and to envisage ways to widen this window. The final chapter is devoted to a case study: the PET processing, which is characterized by an especially complex combination of degradation processes. To cite this article: X. Colin and J. Verdu, C. R. Chimie 9 (2006).  相似文献   

13.
This study addresses the question of how polymer phase separation takes place during polymerization reactions within composite latex particles. Experiments resulted in acrylic/styrene latices with two-phase structures that were analyzed via TEM. Those that resulted from the use of semi-batch reactions allowed us to observe domains that likely did not undergo phase rearrangement after they were formed within the particles. We computed the critical size of the phase-separated domains by assuming that the nucleation and growth mechanism applied to such experiments. We also computed how much these domains would increase in size by subsequent polymerization within those domains. Comparisons of predicted and experimental domain sizes and distributions showed quite reasonable agreement. The domains formed in latex particles of about 350 nm were in the 30–50-nm range. Despite the close agreement between theory and experiment, we are not convinced that phase separation occurs by nucleation and growth, as it appears to us that given the relative rates of reaction and polymer diffusion, phase separation events will often be forced to occur within the spinodal region of the phase diagram. To cite this article: J.M. Stubbs, C. R. Chimie 6 (2003).  相似文献   

14.
The kinetics of uranyl oxygen exchange with water molecules in aqueous solutions was studied in the pH range 1–4 and uranium concentration range 10–4–0.1 M. It was confirmed that the exchange is stimulated by hydrolyzed uranyl species. From the evidence of data on the kinetics of uranyl oxygen exchange the reaction stoichiometry of uranyl hydrolysis was determined. The scheme of uranyl hydrolysis involving formation of (UO2)2(OH)22+, (UO2)2(OH)3+, and other hydrolyzed species was proposed. To cite this article: L.G. Mashirov et al., C. R. Chimie 336 (2004).

Résumé

Étude de l'hydrolyse de l'uranium hexavalent en milieu acide par échange isotopique de l'oxygène. L'échange isotopique de l'oxygène de l'ion uranyle avec les molécules d'eau a été étudié dans le domaine de pH de 1 à 4 et de concentration en uranium de 10–4 à 0,1 M. Cet échange a lieu par l'intermédiaire d'espèces hydrolysées de U(VI). La stoechiométrie des formes hydrolysées de U(VI) est déduite des vitesses d'échange isotopique. En particulier, les espèces (UO2)2(OH)22+ et (UO2)2(OH)3+ ont été clairement identifiées. Un schéma d'hydrolyse est proposé. Pour citer cet article : L.G. Mashirov et al., C. R. Chimie 336 (2004).  相似文献   

15.
This short review provides a concise summary of the current state of research on the population by two-photon absorption of the triplet metal-to-ligand 3MLCT excited state of ruthenium(II) complexes. Several effective and potential applications of this nonlinear optics phenomenon (optical power limiting in the near infrared, biological imagery and photodynamic therapy, PDT) and related linear effects will also be presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号