首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiophenyl-derivatized nitrobenzoic acid ligands have been evaluated as possible sensitizers of Eu(III) and Tb(III) luminescence. The resulting solution and solid-state species were isolated and characterized by luminescence spectroscopy and X-ray crystallography. The Eu(III) complex with 2-nitro-3-thiophen-3-yl-benzoic acid, 1, crystallizes in the monoclinic space group C2/c with a = 28.569(3) A, b = 17.7726(18) A, c = 17.7073(18) A, beta= 126.849(2) degrees, and V = 7194.6(13) A3. The Tb(III) complex with this ligand, 2, is isostructural, and its cell parameters are a = 29.755(6) A, b = 18.123(4) A, c = 19.519(4) A, beta= 130.35(3) degrees, and V = 8021(3) A3. Eu(III) crystallizes with 3-nitro-2-thiophen-3-yl-benzoic acid as a triclinic complex, 3, in the space group P1 with a = 11.045(2) A, b = 12.547(3) A, c = 15.500(3) A, alpha = 109.06(3)degrees, beta = 94.79(3) degrees, gamma = 107.72(3) degrees. and V = 1893.5(7) A3. With the ligand 5-nitro-2-thiophen-3-yl-benzoic acid, Eu(III) yields another molecular compound, 4, triclinic P1, with a = 10.649(2) A, b = 14.009(3) A, c = 15.205(3) A, alpha= 112.15(3) degrees, beta = 100.25(3) degrees, gamma = 106.96(3) degrees, and V = 1900.5(7) A3. All compounds dissolve in water and methanol, and the methanolic solutions are luminescent. The solution species have a metal ion-to-ligand ratio of 1:1. The quantum yields have been determined to be in the range of 0.9-3.1% for Eu(III) and 4.7-9.8% for Tb(III). The highest values of these correspond to the most intense luminescence reported for Ln(III) solutions with this type of sensitizer. The lifetimes of luminescence are in the range of 248.3-338.9 micros for Eu(III) and 208.6-724.9 micros for Tb(III). The stability constants are in the range of log 11 = 2.73-4.30 for Eu(III) and 3.34-4.18 for Tb(III) and, along with the energy migration pathways, are responsible for the reported efficiency of sensitization.  相似文献   

2.
A novel ligand, N2,N6-bis[2-(3-methylpyridyl)]pyridine-2,6-dicarboxamide (L2) and the corresponding Eu(III) and Tb(III) hydrochlorate complexes have been synthesized and characterized in detail based on elemental analysis, IR and NMR. The crystal and molecular structure of the complexes was determined by X-ray crystallography. The Eu(III) and Tb(III) ions were found to coordinate to the amido nitrogen atoms and pyridine nitrogen atoms. The luminescence properties of lanthanide complexes in solid state, in different solutions and in different pH value were investigated. The result shows that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes, and the ligand (L2) is an excellent sensitizer to Tb(III) ion.  相似文献   

3.
The effect of Y(III) and Gd(III) coactivator ions on the intensity of Eu(III) and Tb(III) luminescence in monomer and polymer mixed-metal complexes was studied. Isomorphic replacement of Eu(III) and Tb(III) ions by Y(III) and Gd(III) ions in macromolecular complexes led to sensitization of Eu(III) and Tb(III) ion luminescence. A mechanism of columinescence was suggested. It involves a charge transfer and the ligand orbitals and the vacant orbitals of Eu(III) and Tb(III) ions and coactivators.  相似文献   

4.
Two novel pyrazole-derived ligands, 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (CDPA) and 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N-phenylpicolinamide (CDPP) were prepared by 3,6-dichloropicolinic acid (DCPA). Their complexes with terbium(III) and europium(III) were synthesized. The complexes were characterized by elemental analysis, infrared spectra, 1H NMR and TG–DTG. Furthermore, the above complexes using 1,10-phenanthroline as a secondary ligand were also synthesized and characterized. The luminescence properties of these complexes in solid state were investigated. The results suggested that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes and the fluorescence of the complexes with 1,10-phenanthroline as a secondary ligand was prominently stronger than that of complexes without this ligand., and the three ligand (DCPA), (CDPP) and (CDPA) are excellent sensitizers to Eu(III) and Tb(III) ion.  相似文献   

5.
The convenient synthesis of a new macrocyclic octadentate chelate based on 2,2′-bipyridine chromophore and diethylenetriaminetriacetic acid core is described. In aqueous solutions, the corresponding Eu(III) and Tb(III) neutral complexes are kinetically inert and show very bright luminescence when excited with UV radiation (Φ=11 and 25% respectively). We also report the potentiality of these complexes to act as donors in delayed fluorescence resonance energy transfer (DEFRET).  相似文献   

6.
Starting from pyridine-2,6-dicarboxylic acid (DPA), a series of novel pyridine-2,6-dicarboxylic acid derivatives were synthesized. In these compounds, 4-(hydroxymethyl)pyridine-2,6-dicarboxylate (4-HMDPA) and 4-[(bis-carboxymethyl-amino)-methyl]-pyridine-2,6-dicarboxylic acid (4-BMDPA) were used as multifunctional ligands to coordinate with Tb(III) and Eu(III) and the complexes were prepared. The fluorescence properties of the solid complexes and their solutions were investigated in detail. The results indicated that the weak election-withdrawing group 4-hydroxymethyl in 4-position of pyridine in 4-HMDPA could weaken the fluorescence intensity of the lanthanide complexes. The contradistinctive experimental results showed that the fluorescence intensities of these complexes are related to pH values of the aqueous solutions and the dipole moments of solvent molecules: in the neutral aqueous solutions, the fluorescence intensities of these complexes were strongest, while the dipole moments were lower when the fluorescence intensities were stronger. 4-BMDPA is the better sensitizer and may be used as time-resolved fluoroimmunoassay. __________ Translated from Chemical Journal of Chinese Universities, 2006, 27(3) (in Chinese)  相似文献   

7.
Summary The luminescence quantum efficiency of Eu(III), Tb(III) and Dy(III) in chloride solutions as well as complexed by aminopolyacetic acids was determined. An interpretation of the observed dependences in the system investigated has been proposed.
Die Lumineszenz-Quantenausbeute von Eu(III), Tb(III) und Dy(III) in wäßrigen Lösungen
Zusammenfassung Die Lumineszenz-Quantenausbeute von Eu(III), Tb(III) und Dy(III) in Chloridlösung und in Komplexen mit Aminopolyessigsäuren wurde bestimmt. Eine Interpretation der beobachteten Abhängigkeiten im untersuchten System wurde vorgeschlagen.
  相似文献   

8.
As a result of coordination between ligands L and L' and europium(III) and terbium(III) ions, the new architectures were formed. The formulae of the complexes have been assigned on the basis of the spectroscopic data in solution and microanalyses. The europium complexes show excellent luminescence properties with high quantum yield (1b-Eu(3)L(2)) and effective intramolecular energy transfer from the ligand to the Eu(III) ions.  相似文献   

9.
BACKGROUND: Divalent metal ions serve as structural as well as catalytic cofactors in the hammerhead ribozyme reaction. The natural cofactor in these reactions is Mg(II), but its spectroscopic silence makes it difficult to study. We previously showed that a single Tb(III) ion inhibits the hammerhead ribozyme by site-specific competition for a Mg(II) ion and therefore can be used as a spectroscopic probe for the Mg(II) it replaces. RESULTS: Lanthanide luminescence spectroscopy was used to study the coordination environment around Tb(III) and Eu(III) ions bound to the structurally well-characterized site on the hammerhead ribozyme. Sensitized emission and direct excitation experiments show that a single lanthanide ion binds to the ribozyme under these conditions and that three waters of hydration are displaced from the Tb(III) upon binding the RNA. Furthermore, we show that these techniques allow the comparison of binding affinities for a series of ions to this site. The binding affinities for ions at the G5 site correlates linearly with the function Z(2)/r of the aqua ion (where Z is the charge and r is the radius of the ion). CONCLUSIONS: This study compares the crystallographic nature of the G5 metal-binding site with solution measurements and gives a clearer picture of the coordination environment of this ion. These results provide one of the best characterized metal-binding sites from a ribozyme, so we use this information to compare the RNA site with that of typical metalloproteins.  相似文献   

10.
Two calix[4]arenes with four 2-pyridyhnethyl-l-oxide pendant groups at the lower rim have been synthesized, and their Tb(III) and Eu(III) complexes are fluorescent upon UV light excitation at 312 nm. The complexes are not stable in aqueous solution, completely losing their luminescent properties.  相似文献   

11.
New esters of 2-hydroxybenzoic acid and 4-(4-alkoxybenzoyloxy)phenols, forming liquid crystals, were synthesized. These compounds in solution form complexes with Tb(III), exhibiting photoluminescence properties.  相似文献   

12.
Rare-earth ternary complexes Tb(1-x)Eu(x)(m-NBA)(3)Phen (X=1, 0.25, 0.5, 0.75, 1.0) were synthesized and characterized by IR, DTA-TG, UV, fluorescent spectra and elemental analysis. It was found that luminescence of Eu(3+) complex was enhanced by doped with Tb(3+). It is proved by TG curve that the complexes are stable, ranging from ambient temperature to 360 degrees C in air. The organic-inorganic combined structural device was fabricated, and the electroluminescence intensity of the combined structural device was improved compared with the device of the purely organic components.  相似文献   

13.
The formation of self-assembly complexes between the ligands 1 (SS) and 2 (RR) and terbium or europium was undertaken and shown (using various spectroscopic titrations) to give rise to the exclusive formation of 2:1 (L:Ln) stoichiometry and not the anticipated 3:1 stoichiometry.  相似文献   

14.
Two types of dimeric complexes [Ln2(hfa)6(mu2-O(CH2)2NHMe2)2] and [Ln(thd)2(mu2,eta2-O(CH2)2NMe2)]2 (Ln = YIII, EuIII, GdIII, TbIII, TmIII, LuIII; hfa- = hexafluoroacetylacetonato, thd- = dipivaloylmethanato) are obtained by reacting [Ln(hfa)3(H2O)2] and [Ln(thd)3], respectively, with N,N-dimethylaminoethanol in toluene and are fully characterized. X-ray single crystal analysis performed for the TbIII compounds confirms their dimeric structure. The coordination mode of N,N-dimethylaminoethanol depends on the nature of the beta-diketonate. In [Tb2(hfa)6(mu2-O(CH2)2NHMe2)2], eight-coordinate TbIII ions adopt distorted square antiprismatic coordination environments and are O-bridged by two zwitterionic N,N-dimethylaminoethanol ligands with a Tb1...Tb2 separation of 3.684(1) A. In [Tb(thd)2(mu2,eta2-O(CH2)2NMe2)]2, the N,N-dimethylaminoethanol acts as chelating-bridging O,N-donor anion and the TbIII ions are seven-coordinate; the Tb1...Tb1A separation amounts to 3.735(2) A within centrosymmetric dimers. The dimeric complexes are thermally stable up to 180 degrees C, as shown by thermogravimetric analysis, and their volatility is sufficient for quantitative sublimation under reduced pressure. The EuIII and TbIII dimers display metal-centered luminescence, particularly [Eu2(hfa)6(O(CH2)2NHMe2)2] (quantum yield Q(L)Ln = 58%) and [Tb(thd)2(O(CH2)2NMe2)]2 (32%). Consideration of energy migration paths within the dimers, based on the study of both pure and EuIII- or TbIII-doped (0.01-0.1 mol %) LuIII analogues, leads to the conclusion that both the beta-diketone and N,N-dimethylaminoethanol ligands contribute significantly to the sensitization process of the EuIII luminescence. The ancillary ligand increases considerably the luminescence of [Eu2(hfa)6(O(CH2)2NHMe2)2], compared to [Ln(hfa)3(H2O)2], through the formation of intra-ligand states while it is detrimental to TbIII luminescence in both beta-diketonates. Thin films of the most luminescent compound [Eu2(hfa)6(O(CH2)2NHMe2)2] obtained by vacuum sublimation display photophysical properties analogous to those of the solid-state sample, thus opening perspectives for applications in electroluminescent devices.  相似文献   

15.
A new Tb(III) dimer with an oxazoline-derivatized pyridine ligand, dimethyl-2,2′-(pyridine-2,6-diyl)bis(4,5-dihydrooxazole-4-carboxylate), has been isolated. This complex is highly luminescent and crystallizes in the triclinic P-1 space group with parameters a = 9.6167(2) Å, b = 11.6786(2) Å, c = 12.7548(3) Å, α = 70.026(1)°, β = 83.219(1)°, γ = 81.973(1)° and V = 1329.31(51)Å3. Solution speciation studies showed the formation of monomeric species with 1:1 and 2:1 ligand-to-metal ion stoichiometries with log β11 = 3.66 ± 0.41 and log β21 = 6.16 ± 0.37 for Eu(III) and log β11 = 3.56 ± 0.41 and log β21 = 6.21 ± 0.38 for Tb(III). The quantum yields of emission Φ and luminescence lifetimes τ of solutions with 2:1 stoichiometry were 26.4 ± 0.5% and 1.47 ± 0.06 ms for Eu(III) and 41.0 ± 1.3% and 1.87 ± 0.06 ms for Tb(III).  相似文献   

16.
Solid phases of the [Eu(Phen)(i-Bu2PS2)2(NO3)]–[Tb(Phen)(i-Bu2PS2)2(NO3)] binary system are synthesized. The results of X-ray diffraction phase analysis and photoluminescence measurements allow the synthesized isostructural phases to be classed with substitutional solid solutions. The photoluminescence measurements revealed Tb(III)→Eu(III) energy transfer which induces Eu3+ luminescence.  相似文献   

17.
Synergic extraction of Eu(III) and Tb(III) with 2-thenoyltrifluoroacetone (HTTA) and tribenzylamine (TBA) as neutral donor ligand has been studied in chloroform from perchlorate media at lower pH range. The stoichiometric composition of the adduct was established as M(TTA)3 · 3TBA for both the elements, having a coordination number 9. The formation constants K3,0 and K3,3 and stability constant 3,3 of the organic phase reaction have been calculated. The effect of temperature on the extraction has also been studied. The adducts are stabilized by the large exothermic enthalpy change. The calculated thermodynamic functions such as H, S and G were used to elucidate the mechanism of synergism in which the coordination numbers of the lanthanide ions increased.  相似文献   

18.
The interaction of lanthanide(III) cations (Ln(III) = Sm(III), Eu(III), and Tb(III)) with the deprotonated form of the coumarin-3-carboxylic acid (cca-) has been investigated by density functional theory (DFT/B3LYP) and confirmed by reference MP2 and CCSD(T) computations. Solvent effects on the geometries and stabilities of the Ln(III) complexes were computed using a combination of water clusters and a continuum solvation model. The following two series of systems were considered: (i) Ln(cca)2+, Ln(cca)2+, Ln(cca)3 and (ii) Ln(cca)(H2O)2Cl2, Ln(cca)2(H2O)2Cl, Ln(cca)3. The strength and character of the Ln(III)-cca- bidentate bonding were characterized by calculated Ln-O bond lengths, binding energies, ligand deformation energies, energy partitioning analysis, sigma-donation contributions, and natural population analyses. The energy decomposition calculations predicted predominant electrostatic interaction terms to the Ln-cca bonding (ionic character) and showed variations of the orbital interaction term (covalent contributions) for the Ln-cca complexes studied. Electron distribution analysis suggested that the covalent contribution comes mainly from the interaction with the carboxylate moiety of cca-.  相似文献   

19.
It has been demonstrated that copper-induced terbium(III) luminescence sensitization in heterometallic complexes with hydrazine-containing podands is caused by the ligand ring closure and joint coordination of both metal ions to the carbonyl oxygen atoms as well as, mainly, by the reduction with the hydrazine substituents of Cu(II) to Cu(I), which is able to sensitize terbium luminescence.  相似文献   

20.
We present here the first examples of lanthanide ion complexes with only isophthalic acid or thiophenylisophthalic acid ligands. The complexes of isophthalic acid with Eu(3+) (1) and Tb(3+) (2) and the moderately soluble complexes of 5-thiophen-3-ylisophthalate with Eu(3+) (3), Gd(3+) (4), and Tb(3+) (5) were isolated as single crystals through gel crystallization. X-ray diffraction studies confirm the cross-linking structure of these complexes, which, in case of the thiophenyl derivatives, results in low solubility in common solvents. The two-dimensional isophthalato complex of Eu(3+) (1) crystallizes in the C2/c space group, with a = 22.154(4), b = 12.649(3), and c = 15.921(3) A, beta = 112.34(3) degrees, and V = 4126.7(14) A(3), while the one-dimensional Tb(3+) complex of the same ligand, 2, crystallizes in the space group P2(1)/c with a = 11.921(2), b = 10.838(2), and c = 17.499(4) A, beta = 92.44(3) degrees, and V = 2258.9(8) A(3). The thiophenylisophthalato complexes of Eu(3+) (3) and Gd(3+) (4) are two-dimensional and crystallize in the P2/n space group with parameters for 3 of a = 14.139(3), b = 10.684(2), and c = 15.138(3) A, beta = 102.51(3) degrees, and V = 2232.3(8) A(3) and parameters for 4 of a = 14.1195(13), b = 10.6594(10), and c = 15.1149(14) A, beta = 102.529(2) degrees, and V = 2220.7(4) A(3), while the Tb(3+) complex, 5, also two-dimensional, crystallizes in the P space group with a = 11.051(2), b = 14.528(3), and c = 15.041(3) A, alpha = 77.63(3), beta = 87.86(3), and gamma = 83.51(3) degrees, and V = 2343.48 A(3). All complexes of Eu(3+) and Tb(3+) luminesce in aqueous solution, and the luminescence lifetimes and quantum yields are 123.8 +/- 7.4, 0.14% (1), 475.1 +/- 14.5, 3.58% (3), 129.3 +/- 3.5, 0.19% (4), and 213.9 +/- 2.2 micros, 7.46% (5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号