首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The propagation of electromagnetic waves issued by modulated moving sources of the form j( t,x ) = a( t )e - iw0 t [(x)\dot]0 ( t )d( x - x0 ( t ) )j\left( {t,x} \right) = a\left( t \right)e^{ - i\omega _0 t} \dot x_0 \left( t \right)\delta \left( {x - x_0 \left( t \right)} \right) is considered, where j(t, x) stands for the current density vector, x = (x 1, x 2, x 3) ∈ ℝ3 for the space variables, t ∈ ℝ for time, tx 0(t) ∈ ℝ3 for the vector function defining the motion of the source, ω 0 for the eigenfrequency of the source, a(t) for a narrow-band amplitude, and δ for the standard δ function. Suppose that the media under consideration are dispersive. This means that the electric and magnetic permittivity ɛ(ω), μ(ω) depends on the frequency ω. We obtain a representation of electromagnetic fields in the form of time-frequency oscillating integrals whose phase contains a large parameter λ > 0 characterizing the slowness of the change of the amplitude a(t) and the velocity [(x)\dot]0 ( t )\dot x_0 \left( t \right) and a large distance between positions of the source and the receiver. Applying the two-dimensional stationary phase method to the integrals, we obtain explicit formulas for the electromagnetic field and for the Doppler effects. As an application of our approach, we consider the propagation of electromagnetic waves produced by moving source in a cold nonmagnetized plasma and the Cherenkov radiation in dispersive media.  相似文献   

2.
Infrared asymptotic behavior of a scalar field, passively advected by a random shear flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity is Gaussian, white in time, with correlation function of the form μ d(t-t¢) / k^d-1+x\propto\delta(t-t') / k_{\bot}^{d-1+\xi}, where k =|k | and k is the component of the wave vector, perpendicular to the distinguished direction (‘direction of the flow’)—the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda (Commun. Math. Phys. 131:381, 1990). The structure functions of the scalar field in the infrared range exhibit scaling behavior with exactly known critical dimensions. It is strongly anisotropic in the sense that the dimensions related to the directions parallel and perpendicular to the flow are essentially different. In contrast to the isotropic Kraichnan’s rapid-change model, the structure functions show no anomalous (multi)scaling and have finite limits when the integral turbulence scale tends to infinity. On the contrary, the dependence of the internal scale (or diffusivity coefficient) persists in the infrared range. Generalization to the velocity field with a finite correlation time is also obtained. Depending on the relation between the exponents in the energy spectrum E μ k^1-e\mathcal{E} \propto k_{\bot}^{1-\varepsilon} and in the dispersion law w μ k^2-h\omega\propto k_{\bot}^{2-\eta}, the infrared behavior of the model is given by the limits of vanishing or infinite correlation time, with the crossover at the ray η=0, ε>0 in the εη plane. The physical (Kolmogorov) point ε=8/3, η=4/3 lies inside the domain of stability of the rapid-change regime; there is no crossover line going through this point.  相似文献   

3.
Surface growth models may give rise to instabilities with mound formation whose typical linear size L increases with time (coarsening process). In one dimensional systems coarsening is generally driven by an attractive interaction between domain walls or kinks. This picture applies to growth models for which the largest surface slope remains constant in time (corresponding to model B of dynamics): coarsening is known to be logarithmic in the absence of noise ( L(t) ∼ ln t) and to follow a power law ( L(t) ∼t 1/3) when noise is present. If the surface slope increases indefinitely, the deterministic equation looks like a modified Cahn-Hilliard equation: here we study the late stages of coarsening through a linear stability analysis of the stationary periodic configurations and through a direct numerical integration. Analytical and numerical results agree with regard to the conclusion that steepening of mounds makes deterministic coarsening faster : if α is the exponent describing the steepening of the maximal slope M of mounds ( M αL) we find that L(t) ∼t n: n is equal to for 1≤α≤2 and it decreases from to for α≥2, according to n = α/(5α - 2). On the other side, the numerical solution of the corresponding stochastic equation clearly shows that in the presence of shot noise steepening of mounds makes coarsening slower than in model B: L(t) ∼t 1/4, irrespectively of α. Finally, the presence of a symmetry breaking term is shown not to modify the coarsening law of model α = 1, both in the absence and in the presence of noise. Received 28 September 2001 and Received in final form 21 November 2001  相似文献   

4.
The massive wave equation ${\square_{g}\psi - \alpha \frac{\Lambda}{3}\psi = 0}The massive wave equation \squaregy- a\fracL3y = 0{\square_{g}\psi - \alpha \frac{\Lambda}{3}\psi = 0} is studied on a fixed Kerr-anti de Sitter background (M,gM,a,L){\left(\mathcal{M},g_{M,a,\Lambda}\right)}. We first prove that in the Schwarzschild case (a = 0), ψ remains uniformly bounded on the black hole exterior provided that a < \frac94{\alpha < \frac{9}{4}}, i.e. the Breitenlohner-Freedman bound holds. Our proof is based on vectorfield multipliers and commutators: The total flux of the usual energy current arising from the timelike Killing vector field T (which fails to be non-negative pointwise) is shown to be non-negative with the help of a Hardy inequality after integration over a spacelike slice. In addition to T, we construct a vectorfield whose energy identity captures the redshift producing good estimates close to the horizon. The argument is finally generalized to slowly rotating Kerr-AdS backgrounds. This is achieved by replacing the Killing vectorfield T = ∂ t with K=?t + l?f{K=\partial_t + \lambda \partial_\phi} for an appropriate λ ~ a, which is also Killing and–in contrast to the asymptotically flat case–everywhere causal on the black hole exterior. The separability properties of the wave equation on Kerr-AdS are not used. As a consequence, the theorem also applies to spacetimes sufficiently close to the Kerr-AdS spacetime, as long as they admit a causal Killing field K which is null on the horizon.  相似文献   

5.
6.
If X = X(t, ξ) is the solution to the stochastic porous media equation in O ì Rd, 1 £ d £ 3,{\mathcal{O}\subset \mathbf{R}^d, 1\le d\le 3,} modelling the self-organized criticality (Barbu et al. in Commun Math Phys 285:901–923, 2009) and X c is the critical state, then it is proved that ò0m(O\Ot0)dt < ¥,\mathbbP-a.s.{\int^{\infty}_0m(\mathcal{O}{\setminus}\mathcal{O}^t_0)dt<{\infty},\mathbb{P}\hbox{-a.s.}} and limt?¥ òO|X(t)-Xc|dx = l < ¥, \mathbbP-a.s.{\lim_{t\to{\infty}} \int_\mathcal{O}|X(t)-X_c|d\xi=\ell<{\infty},\ \mathbb{P}\hbox{-a.s.}} Here, m is the Lebesgue measure and Otc{\mathcal{O}^t_c} is the critical region {x ? O; X(t,x)=Xc(x)}{\{\xi\in\mathcal{O}; X(t,\xi)=X_c(\xi)\}} and X c (ξ) ≤ X(0, ξ) a.e. x ? O{\xi\in\mathcal{O}}. If the stochastic Gaussian perturbation has only finitely many modes (but is still function-valued), limt ? ¥ òK|X(t)-Xc|dx = 0{\lim_{t \to {\infty}} \int_K|X(t)-X_c|d\xi=0} exponentially fast for all compact K ì O{K\subset\mathcal{O}} with probability one, if the noise is sufficiently strong. We also recover that in the deterministic case  = 0.  相似文献   

7.
We analyze the long time behavior of solutions of the Schrödinger equation ${i\psi_t=(-\Delta-b/r+V(t,x))\psi}We analyze the long time behavior of solutions of the Schr?dinger equation iyt=(-D-b/r+V(t,x))y{i\psi_t=(-\Delta-b/r+V(t,x))\psi}, x ? \mathbbR3{x\in\mathbb{R}^3}, r =  |x|, describing a Coulomb system subjected to a spatially compactly supported time periodic potential V(t, x) =  V(t +  2π/ω, x) with zero time average.  相似文献   

8.
We consider a Gaussian diffusion X t (Ornstein-Uhlenbeck process) with drift coefficient γ and diffusion coefficient σ 2, and an approximating process YetY^{\varepsilon}_{t} converging to X t in L 2 as ε→0. We study estimators [^(g)]e\hat{\gamma}_{\varepsilon}, [^(s)]2e\hat{\sigma}^{2}_{\varepsilon} which are asymptotically equivalent to the Maximum likelihood estimators of γ and σ 2, respectively. We assume that the estimators are based on the available N=N(ε) observations extracted by sub-sampling only from the approximating process YetY^{\varepsilon}_{t} with time step Δ=Δ(ε). We characterize all such adaptive sub-sampling schemes for which [^(g)]e\hat{\gamma}_{\varepsilon}, [^(s)]2e\hat{\sigma}^{2}_{\varepsilon} are consistent and asymptotically efficient estimators of γ and σ 2 as ε→0. The favorable adaptive sub-sampling schemes are identified by the conditions ε→0, Δ→0, (Δ/ε)→∞, and NΔ→∞, which implies that we sample from the process YetY^{\varepsilon}_{t} with a vanishing but coarse time step Δ(ε)≫ε. This study highlights the necessity to sub-sample at adequate rates when the observations are not generated by the underlying stochastic model whose parameters are being estimated. The adequate sub-sampling rates we identify seem to retain their validity in much wider contexts such as the additive triad application we briefly outline.  相似文献   

9.
We show that the residual entropy, S, for the two-dimensional Blume-Emery-Griffiths model at the antiquadrupolar-ferromagnetic coexistence line satisfies the following bounds ln(l1,2n,+/l1,2n-1,+) £ S £ (lnl1,k,free)/k\ln(\lambda_{1,2n,+}/\lambda_{1,2n-1,+})\leq S\leq (\ln \lambda_{1,k,\mathit{free}})/k, for all n≥2 and k≥1, where λ 1,n,free and λ 1,n,+ are the largest eigenvalues of the transfer matrices F n,free and F n,+, respectively. In particular, we have S=0.439396±0.008670.  相似文献   

10.
We show that a necessary condition for T to be a potential blow up time is limt- T ||v(·,t)||L3=¥{\lim\nolimits_{t\uparrow T} \|v(\cdot,t)\|_{L_3}=\infty}.  相似文献   

11.
Using the thermal entangled state representation 〈η|, we examine the master equation (ME) describing phase-sensitive reservoirs. We present the analytical expression of solution to the ME, i.e., the Kraus operator-sum representation of density operator ρ is given, and its normalization is also proved by using the IWOP technique. Further, by converting the characteristic function χ(λ) into an overlap between two “pure states” in enlarged Fock space, i.e., χ(λ)=〈η =−λ |ρ|η =0〉, we consider time evolution of distribution functions, such as Wigner, Q- and P-function. As applications, the photon-count distribution and the evolution of Wigner function of photon-added coherent state are examined in phase-sensitive reservoirs. It is shown that the Wigner function has a negative value when kt\leqslant\frac 12ln( 1+m) \kappa t\leqslant\frac {1}{2}\ln ( 1+\mu_{\infty}) is satisfied, where μ depends on the squeezing parameter |M|2 of environment, and increases as the increase of |M|.  相似文献   

12.
The existence of co-rotational finite time blow up solutions to the wave map problem from ${\mathbb{R}^{2+1} \to N}The existence of co-rotational finite time blow up solutions to the wave map problem from \mathbbR2+1 ? N{\mathbb{R}^{2+1} \to N} , where N is a surface of revolution with metric d ρ 2 + g(ρ)2 dθ2, g an entire function, is proven. These are of the form u(t,r)=Q(l(t)t)+R(t,r){u(t,r)=Q(\lambda(t)t)+\mathcal{R}(t,r)} , where Q is a time independent solution of the co-rotational wave map equation −u tt  + u rr  + r −1 u r  = r −2 g(u)g′(u), λ(t) = t −1-ν, ν > 1/2 is arbitrary, and R{\mathcal{R}} is a term whose local energy goes to zero as t → 0.  相似文献   

13.
We make the cosmological constant, Λ, into a field and restrict the variations of the action with respect to it by causality. This creates an additional Einstein constraint equation. It restricts the solutions of the standard Einstein equations and is the requirement that the cosmological wave function possess a classical limit. When applied to the Friedmann metric it requires that the cosmological constant measured today, t U , be L ~ tU-2 ~ 10-122{\Lambda \sim t_{U}^{-2} \sim 10^{-122}} , as observed. This is the classical value of Λ that dominates the wave function of the universe. Our new field equation determines Λ in terms of other astronomically measurable quantities. Specifically, it predicts that the spatial curvature parameter of the universe is Wk0 o -k/a02H2=-0.0055{\Omega _{\mathrm{k0}} \equiv -k/a_{0}^{2}H^{2}=-0.0055} , which will be tested by Planck Satellite data. Our theory also creates a new picture of self-consistent quantum cosmological history.  相似文献   

14.
Time-like orbits in Schwarzschild space-time are presented and classified in a very transparent and straightforward way into four types. The analytical solutions to orbit, time, and proper time equations are given for all orbit types in the form r = r(λ), t = t(χ), and ττ (χ), where λ is the true anomaly and χ is a parameter along the orbit. A very simple relation between λ and χ is also shown. These solutions are very useful for modelling temporal evolution of transient phenomena near black holes since they are expressed with Jacobi elliptic functions and elliptic integrals, which can be calculated very efficiently and accurately.  相似文献   

15.
Given two selfadjoint operators A and V=V + -V -, we study the motion of the eigenvalues of the operator A(t)=A-tV as t increases. Let α>0 and let λ be a regular point for A. We consider the quantities N +(λ,α), N -(λ,α), N 0(λ,α) defined as the number of the eigenvalues of the operator A(t) that pass point λ from the right to the left, from the left to the right or change the direction of their motion exactly at point λ, respectively, as t increases from 0 to α>0. An abstract theorem on the asymptotics for these quantities is presented. Applications to Schr?dinger operators and its generalizations are given. Received: 9 April 1997 / Accepted: 26 August 1997  相似文献   

16.
17.
Rutile filled PTFE composites have been fabricated through Sigma Mixing, Extrusion, Calendering and Hot pressing (SMECH) process. Dielectric constant (er¢\varepsilon_{r}') and loss tangent (tan δ) of filled composites at microwave frequency region were measured by waveguide cavity perturbation technique using a Vector Network Analyzer. The temperature coefficient of dielectric constant (ter\tau_{\varepsilon_{r}'}) was measured in the 0–100°C temperature range. In order to tailor the temperature coefficient of dielectric constant of the composite, thermoplastic Poly (ether ether ketone) (PEEK) has been used as a secondary polymer. Flexible laminate having a dielectric constant, er¢ ~ 10.4\varepsilon_{r}'\sim10.4, loss tangent tan δ∼0.0045 and ter ~ -40 ppm/K\tau_{\varepsilon_{r}'}\sim-40\mbox{ ppm}/\mbox{K} was realized in Polytetrafluroethylene (PTFE)/rutile composites with the addition of 8 wt% PEEK. The reduction in ter\tau_{\varepsilon_{r}'} is mainly attributed to the positive ter\tau_{\varepsilon_{r}'} of PEEK and increased interface region in the composites as a result of the PEEK addition.  相似文献   

18.
19.
In this paper we have assumed charged non-perfect fluid as the material content of the space-time. The expression for the “mass function-M(r,y,z,t)” is obtained for the general situation and the contributions from the Ricci tensor in the form of material energy density ρ, pressure anisotropy [\fracp2+p32-p1][\frac{p_{2}+p_{3}}{2}-p_{1}] , electromagnetic field energy ℰ and the conformal Weyl tensor, viz. energy density of the free gravitational field ε (=\frac-3Y24p)(=\frac{-3\Psi_{2}}{4\pi}) are made explicit. This work is an extension of the work obtained earlier by Rao and Hasmani (Math. Today XIIA:71, 1993; New Directions in Relativity and Cosmology, Hadronic Press, Nonantum, 1997) for deriving general dynamical equations for Dingle’s space-times described by this most general orthogonal metric,
ds2=exp(n)dt2-exp(l)dr2-exp(2a)dy2-exp(2b)dz2,ds^2=\exp(\nu)dt^2-\exp(\lambda)dr^2-\exp(2\alpha)dy^2-\exp(2\beta)dz^2,  相似文献   

20.
In this paper we are mainly concerned with existence and modulation of uniform sliding states for particle chains with damping γ and external driving force F. If the on-site potential vanishes, then for each F > 0 there exist trivial uniform sliding states x n (t) = n ω + ν t + α for which the particles are uniformly spaced with spacing ω > 0, the sliding velocity of each particle is ν = F/γ, and the phase α is arbitrary. If the particle chain with convex interaction potential is placed in a periodic on-site potential, we show under some conditions the existence of modulated uniform sliding states of the form
xn(t)=nw+nt+a+u(nw+nt+a),x_n(t)=n\omega+\nu t+\alpha+u(n\omega+\nu t+\alpha),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号