首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the homotopy type distinction of finite CW-complexes. A (G,n)-complex is a finite n-dimensional CW-complex with fundamental-group G and vanishing higher homotopy-groups up to dimension n−1. In case G is an n-dimensional group there is a unique (up to homotopy) (G,n)-complex on the minimal Euler-characteristic level χmin(G,n). For every n we give examples of n-dimensional groups G for which there exist homotopically distinct (G,n)-complexes on the level χmin(G,n)+1. In the case where n=2 these examples are algebraic.  相似文献   

2.
Let G be an Abelian group. We prove that a group G admits a Hausdorff group topology τ such that the von Neumann radical n(G,τ) of (G,τ) is non-trivial and finite iff G has a non-trivial finite subgroup. If G is a topological group, then n(n(G))≠n(G) if and only if n(G) is not dually embedded. In particular, n(n(Z,τ))=n(Z,τ) for any Hausdorff group topology τ on Z.  相似文献   

3.
For a graph G, let σk(G) be the minimum degree sum of an independent set of k vertices. Ore showed that if G is a graph of order n?3 with σ2(G)?n then G is hamiltonian. Let κ(G) be the connectivity of a graph G. Bauer, Broersma, Li and Veldman proved that if G is a 2-connected graph on n vertices with σ3(G)?n+κ(G), then G is hamiltonian. On the other hand, Bondy showed that if G is a 2-connected graph on n vertices with σ3(G)?n+2, then each longest cycle of G is a dominating cycle. In this paper, we prove that if G is a 3-connected graph on n vertices with σ4(G)?n+κ(G)+3, then G contains a longest cycle which is a dominating cycle.  相似文献   

4.
For a Banach algebra A with a bounded approximate identity, we investigate the A-module homomorphisms of certain introverted subspaces of A, and show that all A-module homomorphisms of A are normal if and only if A is an ideal of A∗∗. We obtain some characterizations of compactness and discreteness for a locally compact quantum group G. Furthermore, in the co-amenable case we prove that the multiplier algebra of L1(G) can be identified with M(G). As a consequence, we prove that G is compact if and only if LUC(G)=WAP(G) and M(G)≅Z(LUC(G)); which partially answer a problem raised by Volker Runde.  相似文献   

5.
《Journal of Complexity》1995,11(3):377-391
Given an upper triangular matrix ARn×n and a tolerance τ, we show that the problem of finding a similarity transformation G such that G−1AG is block diagonal with the condition number of G being at most τ is NP-hard. Let ƒ(n) be a polynomial in n. We also show that the problem of finding a similarity transformation G such that G−1AG is block-diagonal with the condition number of G being at most ƒ(n) times larger than the smallest possible is NP-hard.  相似文献   

6.
G is any simple graph with m edges and n vertices where these vertices have vertex degrees d(1)≥d(2)≥?≥d(n), respectively. General algorithms for the exact calculation of χ(G), the chromatic number of G, are almost always of ‘branch and bound’ type; this type of algorithm requires an easily constructed lower bound for χ(G). In this paper it is shown that, for a number of such bounds (many of which are described here for the first time), the bound does not exceed cl(G) where cl(G) is the clique number of G.In 1972 Myers and Liu showed that cl(G)≥n?(n?2m?n). Here we show that cl(G)≥ n?[n?(2m?n)(1+c2v)12], where cv is the vertex degree coefficient of variation in G, that cl(G)≥ Bondy's constructive lower bound for χ(G), and that cl(G)≥n?(n?W(G)), where W(G) is the largest positive integer such that W(G)≤d(W(G)+1) [W(G)+1 is the Welsh and Powell upper bound for χ(G)]. It is also shown that cl(G)+13>n?(n?L(G))≥n?(n1) and that χ(G)≥ n?(n1); λ1 is the largest eigenvalue of A, the adjacency matrix of G, and L(G) is a newly defined single-valued function of G similar to W(G) in its construction from the vertex degree sequence of G [L(G)≥W(G)].Finally, a ‘greedy’ lower bound for cl(G) is constructed from A and it is shown that this lower bound is never less than Bondy's bound; thereafter, for 150 random graphs with varying numbers of vertices and edge densities, the values of lower bounds given in this paper are listed, thereby illustrating that this last greedily obtained lower bound is almost always better than each of the other bounds.  相似文献   

7.
For a graph G, ??(G) denotes the minimum degree of G. In 1971, Bondy proved that, if G is a 2-connected graph of order n and d(x)?+?d(y)????n for each pair of non-adjacent vertices x,y in G, then G is pancyclic or G?=?K n/2,n/2. In 2001, Xu proved that, if G is a 2-connected graph of order n????6 and |N(x)????N(y)|?+???(G)????n for each pair of non-adjacent vertices x,y in G, then G is pancyclic or G?=?K n/2,n/2. In this paper, we introduce a new sufficient condition of generalizing degree sum and neighborhood union and prove that, if G is a 2-connected graph of order n????6 and |N(x)????N(y)|?+?d(w)????n for any three vertices x,y,w of d(x,y)?=?2 and wx or $wy\not\in E(G)$ in G, then G is 4-vertex pancyclic or G belongs to two classes of well-structured exceptional graphs. This result also generalizes the above results.  相似文献   

8.
Let G be a group, S a subgroup of G, and F a field of characteristic p. We denote the augmentation ideal of the group algebra FG by ω(G). The Zassenhaus-Jennings-Lazard series of G is defined by Dn(G)=G∩(1+ωn(G)). We give a constructive proof of a theorem of Quillen stating that the graded algebra associated with FG is isomorphic as an algebra to the enveloping algebra of the restricted Lie algebra associated with the Dn(G). We then extend a theorem of Jennings that provides a basis for the quotient ωn(G)/ωn+1(G) in terms of a basis of the restricted Lie algebra associated with the Dn(G). We shall use these theorems to prove the main results of this paper. For G a finite p-group and n a positive integer, we prove that G∩(1+ω(G)ωn(S))=Dn+1(S) and G∩(1+ω2(G)ωn(S))=Dn+2(S)Dn+1(SD2(G)). The analogous results for integral group rings of free groups have been previously obtained by Gruenberg, Hurley, and Sehgal.  相似文献   

9.
We develop an equivariant Nielsen fixed point theory for n-valued G-maps by associating (as in Better (2010) [2]) an abstract simplicial complex to any equivariant n-valued map and defining, in terms of this complex, two n-valued continuous G-homotopy invariants that are lower bounds for the number of fixed points and of orbits in the n-valued continuous G-homotopy class of a given n-valued G-map. We also provide an equivariant Hopf construction for n-valued G-maps as well as a minimality result for the Nielsen numbers introduced in this setting.  相似文献   

10.
11.
A graph G of order p ? 3 is called n-hamiltonian, 0 ? n ? p ? 3, if the removal of any m vertices, 0 ? m ? n, results in a hamiltonian graph. A graph G of order p ? 3 is defined to be n-hamiltonian, ?p ? n ? 1, if there exists ?n or fewer pairwise disjoint paths in G which collectively span G. Various conditions in terms of n and the degrees of the vertices of a graph are shown to be sufficient for the graph to be n-hamiltonian for all possible values of n. It is also shown that if G is a graph of order p ? 3 and K(G) ? β(G) + n (?p ? n ? p ? 3), then G is n-hamiltonian.  相似文献   

12.
We investigate the generalized involution models of the projective reflection groups G(r, p, q, n). This family of groups parametrizes all quotients of the complex reflection groups G(r, p, n) by scalar subgroups. Our classification is ultimately incomplete, but we provide several necessary and sufficient conditions for generalized involution models to exist in various cases. In the process we solve several intermediate problems concerning the structure of projective reflection groups. We derive a simple criterion for determining whether two groups G(r, p, q, n) and G(r, p′, q′, n) are isomorphic. We also describe explicitly the form of all automorphisms of G(r, p, q, n), outside a finite list of exceptional cases. Building on prior work, this allows us to prove that G(r, p, 1, n) has a generalized involution model if and only if G(r, p, 1, n) ≌ G(r, 1, p, n). We also classify which groups G(r, p, q, n) have generalized involution models when n = 2, or q is odd, or n is odd.  相似文献   

13.
We present an infinite set A of finite graphs such that for any graph G e A the order | V(k n (G))| of the n-th iterated clique graph k n (G) is a linear function of n. We also give examples of graphs G such that | V(k n(G))| is a polynomial of any given positive degree.  相似文献   

14.
An even factor of a graph is a spanning subgraph of G in which all degrees are even, positive integers. In this paper, we characterize the claw-free graphs having even factors and then prove that the n-iterated line graph Ln(G) of G has an even factor if and only if every end branch of G has length at most n and every odd branch-bond of G has a branch of length at most n+1.  相似文献   

15.
The clique graph K(G) of a simple graph G is the intersection graph of its maximal complete subgraphs, and we define iterated clique graphs by K0(G)=G, Kn+1(G)=K(Kn(G)). We say that two graphs are homotopy equivalent if their simplicial complexes of complete subgraphs are so. From known results, it can be easily inferred that Kn(G) is homotopy equivalent to G for every n if G belongs to the class of clique-Helly graphs or to the class of dismantlable graphs. However, in both of these cases the collection of iterated clique graphs is finite up to isomorphism. In this paper, we show two infinite classes of clique-divergent graphs that satisfy G?Kn(G) for all n, moreover Kn(G) and G are simple-homotopy equivalent. We provide some results on simple-homotopy type that are of independent interest.  相似文献   

16.
We assign to each positive integer n a digraph G(n) whose set of vertices is H={0,1,…,n-1} and for which there exists a directed edge from aH to bH if . Associated with G(n) are two disjoint subdigraphs: G1(n) and G2(n) whose union is G(n). The vertices of G1(n) correspond to those residues which are relatively prime to n. The structure of G1(n) is well understood. In this paper, we investigate in detail the structure of G2(n).  相似文献   

17.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. For every pair of positive integers n,k, it is proved that if 3?k?n-3, then Hn,k, the graph obtained from the star K1,n-1 by joining a vertex of degree 1 to k+1 other vertices of degree 1, is the unique connected graph that maximizes the largest signless Laplacian eigenvalue over all connected graphs with n vertices and n+k edges.  相似文献   

18.
For a graph G, let χ(G) denote its chromatic number and σ(G) denote the order of the largest clique subdivision in G. Let H(n) be the maximum of χ(G)=σ(G) over all n-vertex graphs G. A famous conjecture of Hajós from 1961 states that σ(G) ≥ χ(G) for every graph G. That is, H(n)≤1 for all positive integers n. This conjecture was disproved by Catlin in 1979. Erd?s and Fajtlowicz further showed by considering a random graph that H(n)≥cn 1/2/logn for some absolute constant c>0. In 1981 they conjectured that this bound is tight up to a constant factor in that there is some absolute constant C such that χ(G)=σ(G) ≤ Cn 1/2/logn for all n-vertex graphs G. In this paper we prove the Erd?s-Fajtlowicz conjecture. The main ingredient in our proof, which might be of independent interest, is an estimate on the order of the largest clique subdivision which one can find in every graph on n vertices with independence number α.  相似文献   

19.
Let G be a graph with n vertices and ν(G) be the matching number of G. Let η(G) denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G)=n-2ν(G). Tan and Liu [X. Tan, B. Liu, On the nullity of unicyclic graphs, Linear Alg. Appl. 408 (2005) 212-220] proved that the nullity set of all unicyclic graphs with n vertices is {0,1,…,n-4} and characterized the unicyclic graphs with η(G)=n-4. In this paper, we characterize the unicyclic graphs with η(G)=n-5, and we prove that if G is a unicyclic graph, then η(G) equals , or n-2ν(G)+2. We also give a characterization of these three types of graphs. Furthermore, we determine the unicyclic graphs G with η(G)=0, which answers affirmatively an open problem by Tan and Liu.  相似文献   

20.
The eccentric distance sum (EDS) is a novel topological index that offers a vast potential for structure activity/property relationships. For a connected graph G, the eccentric distance sum is defined as ξd(G)=vV(G)ecG(v)DG(v), where ecG(v) is the eccentricity of a vertex v in G and DG(v) is the sum of distances of all vertices in G from v. More recently, Yu et al. [G. Yu, L. Feng, A. Ili?, On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011) 99-107] proved that for an n-vertex tree T, ξd(T)?4n2−9n+5, with equality holding if and only if T is the n-vertex star Sn, and for an n-vertex unicyclic graph G, ξd(G)?4n2−9n+1, with equality holding if and only if G is the graph obtained by adding an edge between two pendent vertices of n-vertex star. In this note, we give a short and unified proof of the above two results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号