首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A finite element method for the simulation of viscoelastic flows has been developed. It uses a weak formulation of the method of characteristics to treat the viscoelastic constitutive law. Numerical results in a 4:1 contraction are presented and are discussed with respect to previous computations. New phenomena are put in evidence and new questions are opened in this already controversial problem.  相似文献   

2.
A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractional step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitutive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpolation approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) constitutive model for describing viscoelastic behaviors is particularly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demonstrate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process.  相似文献   

3.
We present an extended finite element method (XFEM) for the direct numerical simulation of the flow of viscoelastic fluids with suspended particles. For moving particle problems, we devise a temporary arbitrary Lagrangian–Eulerian (ALE) scheme which defines the mapping of field variables at previous time levels onto the computational mesh at the current time level. In this method, a regular mesh is used for the whole computational domain including both fluid and particles. A temporary ALE mesh is constructed separately and the computational mesh is kept unchanged throughout the whole computations. Particles are moving on a fixed Eulerian mesh without any need of re-meshing. For mesh refinements around the interface, we combine XFEM with the grid deformation method, in which nodal points are redistributed close to the interface while preserving the mesh topology. Our method is verified by comparing with the results of boundary fitted mesh problems combined with the conventional ALE scheme. The proposed method shows similar accuracy compared with boundary fitted mesh problems and superior accuracy compared with the fictitious domain method. If the grid deformation method is combined with XFEM, the required computational time is reduced significantly compared to uniform mesh refinements, while providing mesh convergent solutions. We apply the proposed method to the particle migration in rotating Couette flow of a Giesekus fluid. We investigate the effect of initial particle positions, the Weissenberg number, the mobility parameter of the Giesekus model and the particle size on the particle migration. We also show two-particle interactions in confined shear flow of a viscoelastic fluid. We find three different regimes of particle motions according to initial separations of particles.  相似文献   

4.
A cell‐vertex hybrid finite volume/element method is investigated that is implemented on triangles and applied to the numerical solution of Oldroyd model fluids in contraction flows. Particular attention is paid to establishing high‐order accuracy, whilst retaining favourable stability properties. Elevated levels of elasticity are sought. The main impact of this study reveals that switching from quadratic to linear finite volume stress representation with discontinuous stress gradients, and incorporating local reduced quadrature at the re‐entrant corner, provide enhance stability properties. Solution smoothness is achieved by adopting the non‐conservative flux form with area integration, by appealing to quadratic recovered velocity‐gradients, and through consistency considerations in the treatment of the time term in the constitutive equation. In this manner, high‐order accuracy is maintained, stability is ensured, and the finer features of the flow are confirmed via mesh refinement. Lip vortices are observed for We>1, and a trailing‐edge vortex is also apparent. Loss of evolution and solution asymptotic behaviour towards the re‐entrant corner are also discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a numerical method, which is about the coupling of continuous and discontinuous Galerkin method based on the splitting scheme, is presented for the calculation of viscoelastic flows of the Oldroyd‐B fluid. The momentum equation is discretized in time by using the Adams‐Bashforth second‐order algorithm, and then decoupled via the splitting approach. Considering the Oldroyd‐B constitutive equation, the second‐order Runge‐Kutta approach is selected to complete the temporal discretization. As for the spatial discretizations, the fundamental purpose is to make the best of finite element method (FEM) and discontinuous Galerkin (DG) method to handle different types of equations. Specifically speaking, for the subequations, FEM is chosen to treat the Poisson and Helmholtz equations, and DG is employed to deal with the nonlinear convective term. In addition, because of the hyperbolic nature, DG is also utilized to discretize the Oldroyd‐B constitutive equation spatially. This coupled method avoids resorting to extra stabilization technique occurred in standard FEM framework even for moderately high values of Weissenberg number and also reduces the complexity compared with unified DG scheme. The Oldroyd‐B model is applied to investigate several typical and challenging benchmarks, such as the 4:1 planar contraction flow and the lid‐driven cavity flow, with a wide range of Weissenberg number to illustrate the feasibility, robustness, and validity of our coupled method.  相似文献   

6.
The accuracy and consistency of a new cell‐vertex hybrid finite element/volume scheme are investigated for viscoelastic flows. Finite element (FE) discretization is employed for the momentum and continuity equation, with finite volume (FV) applied to the constitutive law for stress. Here, the interest is to explore the consequences of utilizing conventional cell‐vertex methodology for an Oldroyd‐B model and to demonstrate resulting drawbacks in the presence of complex source terms on structured and unstructured grids. Alternative strategies worthy of consideration are presented. It is demonstrated how high‐order accuracy may be achieved in steady state by respecting consistency in the formulation. Both FE and FV spatial discretizations are embedded in the scheme, with FV triangular sub‐cells referenced within parent triangular finite elements. Both model and complex flow problems are selected to quantify and assess accuracy, appealing to analysis and experimental validation. The test problem is that of steady sink flow, a pure extensional flow, which reflects some of the numerical difficulties involved in solving more generalized viscoelastic flows, where both source and flux terms may contribute equally to stress propagation. In addition, a complex transient filament‐stretching flow is chosen to compute the evolution of stress fields within liquid bridges. Shortcomings of the various stress upwinding schemes are discussed in this context, whilst dealing with such free‐surface type problems. Here, stress fluctuation distribution alone is advocated, and a Lax‐scheme is found to deliver accuracy and stability to the computational results, comparing well with the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A new numerical scheme for simulation of viscoelastic fluid flows was designed, making use of finite element algorithms generally regarded as advantageous for tackling the problem. This includes the Lagrangian approach for the solution of viscoelastic constitutive equation using the co-deformational frame of reference with a possibility of analytically solving the equation along the particles trajectories, which in turn allowed eluding the solution of any system of linear equations for the stress. Then, the full ellipticity of the momentum conservation equation was utilised thanks to a possibility of accurate determination of the stress tensor independently of the velocity field at the current stage of computation. The needed independent stress was calculated at each time step on the basis of the past deformation history, which in turn was determined on the basis of the past velocity fields, all incorporated into a modified Euler time stepping algorithm. Owing to explicit inclusion of the full viscous term from the viscoelastic model into the momentum conservation equation, no stress splitting was necessary. The trajectory feet tracking was done accurately using a semi-analytic solution of the displacement gradient evolution equation and a weak formulation of the kinematics equation, the latter at the expense of solving an extra symmetric system of linear equations.The error expressed in the form of the Sobolev norms was determined using a comparison with available analytical solution for UCM fluid in the transient regime or numerically obtained steady-state stress values for the PTT fluid in Couette flow. The implementation of the PTT fluid model was done by modifying the relative displacement gradient tensor so that a new convective frame was defined.The stability of the algorithm was assessed using the well-known benchmark problem of a sphere sedimenting in a tube with viscoelastic fluid. The stable numerical results were obtained at high Weissenberg numbers, with the limit of convergence Wi=6.6, exceeding any previously reported values. The robustness of the code was proven by simulation of the Weissenberg effect (the rod-climbing phenomenon) with the use of PTT fluid.  相似文献   

8.
The time-dependent Navier–Stokes equations and the energy balance equation for an incompressible, constant property fluid in the Boussinesq approximation are solved by a least-squares finite element method based on a velocity–pressure–vorticity–temperature–heat-flux ( u –P–ω–T– q ) formulation discretized by backward finite differencing in time. The discretization scheme leads to the minimization of the residual in the l2-norm for each time step. Isoparametric bilinear quadrilateral elements and reduced integration are employed. Three examples, thermally driven cavity flow at Rayleigh numbers up to 106, lid-driven cavity flow at Reynolds numbers up to 104 and flow over a square obstacle at Reynolds number 200, are presented to validate the method.  相似文献   

9.
粘弹性固体的精细积分有限元算法   总被引:3,自引:0,他引:3  
粘弹性固体本构方程的数学表达式分为微分型和积分型两种,其数值求解主要是时域上离散计算。文中从微分型表达式出发导出其状态空间方程的数学表达式,通过严格推导论证了它与微、积分型表达式的等价性;引入状态空间方程,从而利用精细积分格式来求解粘弹性固体本构方程;给出了粘弹性固体本构方程的精细积分有限元算法,为求解粘弹性固体本构方程的数值解提供了一个新的途径,具有计算简便,求解精度高等优点。  相似文献   

10.
A finite volume, time‐marching for solving time‐dependent viscoelastic flow in two space dimensions for Oldroyd‐B and Phan Thien–Tanner fluids, is presented. A non‐uniform staggered grid system is used. The conservation and constitutive equations are solved using the finite volume method with an upwind scheme for the viscoelastic stresses and an hybrid scheme for the velocities. To calculate the pressure field, the semi‐implicit method for the pressure linked equation revised method is used. The discretized equations are solved sequentially, using the tridiagonal matrix algorithm solver with under‐relaxation. In both, the full approximation storage multigrid algorithm is used to speed up the convergence rate. Simulations of viscoelastic flows in four‐to‐one abrupt plane contraction are carried out. We will study the behaviour at the entrance corner of the four‐to‐one planar abrupt contraction. Using this solver, we show convergence up to a Weissenberg number We of 20 for the Oldroyd‐B model. No limiting Weissenberg number is observed even though a Phan Thien–Tanner model is used. Several numerical results are presented. Smooth and stable solutions are obtained for high Weissenberg number. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J‐G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that arises from decomposing a compressible velocity field. It has the advantage that an additional boundary condition can be assigned to the gauge variable, thus eliminating the issue of a pressure boundary condition associated with the original primitive variable formulation. The computational task is then reduced to solving standard heat and Poisson equations, which are approximated by straightforward, piecewise linear (or higher‐order) finite elements. This method can achieve high‐order accuracy at a cost comparable with that of solving standard heat and Poisson equations. It is naturally adapted to complex geometry and it is much simpler than traditional finite element methods for incompressible flows. Several numerical examples on both structured and unstructured grids are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
We discuss in this paper the numerical simulation of compressible viscous flows by a combination of finite element methods for the space approximation, an implicit second-order multistep scheme for the time discretization and GMRES iterative methods for solving the non-linear problems encountered at each time step. Numerical results corresponding to flows around aerofoils and aerospace vehicles illustrate the possibilities of these methods.  相似文献   

13.
A parallel semi-explicit iterative finite element computational procedure for modelling unsteady incompressible fluid flows is presented. During the procedure, element flux vectors are calculated in parallel and then assembled into global flux vectors. Equilibrium iterations which introduce some ‘local implicitness’ are performed at each time step. The number of equilibrium iterations is governed by an implicitness parameter. The present technique retains the advantages of purely explicit schemes, namely (i) the parallel speed-up is equal to the number of parallel processors if the small communication overhead associated with purely explicit schemes is ignored and (ii) the computation time as well as the core memory required is linearly proportional to the number of elements. The incompressibility condition is imposed by using the artificial compressibility technique. A pressure-averaging technique which allows the use of equal-order interpolations for both velocity and pressure, this simplifying the formulation, is employed. Using a standard Galerkin approximation, three benchmark steady and unsteady problems are solved to demonstrate the accuracy of the procedure. In all calculations the Reynolds number is less than 500. At these Reynolds numbers it was found that the physical dissipation is sufficient to stabilize the convective term with no need for additional upwind-type dissipation. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
A new mixed‐interpolation finite element method is presented for the two‐dimensional numerical simulation of incompressible magnetohydrodynamic (MHD) flows which involve convective heat transfer. The proposed method applies the nodal shape functions, which are locally defined in nine‐node elements, for the discretization of the Navier–Stokes and energy equations, and the vector shape functions, which are locally defined in four‐node elements, for the discretization of the electromagnetic field equations. The use of the vector shape functions allows the solenoidal condition on the magnetic field to be automatically satisfied in each four‐node element. In addition, efficient approximation procedures for the calculation of the integrals in the discretized equations are adopted to achieve high‐speed computation. With the use of the proposed numerical scheme, MHD channel flow and MHD natural convection under a constant applied magnetic field are simulated at different Hartmann numbers. The accuracy and robustness of the method are verified through these numerical tests in which both undistorted and distorted meshes are employed for comparison of numerical solutions. Furthermore, it is shown that the calculation speed for the proposed scheme is much higher compared with that for a conventional numerical integration scheme under the condition of almost the same memory consumption. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A new mixed finite element has allowed us to calculate flows of Maxwell-B and Oldroyd-B fluids at very high values of the Deborah number, De. The element is divided into several bilinear sub-elements for the stresses, while streamline-upwinding is used for discretizing the constitutive equation. The method is applied to the stick-slip problem, the flow through a tapered contraction and the flow through four-to-one abrupt plane and circular contractions. Important corner vortices develop at high values of De in the circular contraction. We have not encountered upper limits for the Deborah number in our calculations with Oldroyd-B fluids.  相似文献   

16.
A new upwind finite element scheme for the incompressible Navier-Stokes equations at high Reynolds number is presented. The idea of the upwind technique is based on the choice of upwind and downwind points. This scheme can approximate the convection term to third-order accuracy when these points are located at suitable positions. From the practical viewpoint of computation, the algorithm of the pressure Poisson equation procedure is adopted in the framework of the finite element method. Numerical results of flow problems in a cavity and past a circular cylinder show excellent dependence of the solutions on the Reynolds number. The influence of rounding errors causing Karman vortex shedding is also discussed in the latter problem.  相似文献   

17.
We describe an adaptive finite element algorithm for solving the unsteady Euler equations. The finite element algorithm is based on a Taylor/Galerkin formulation and uses a very fast and efficient data structure to refine and unrefine the grid in order to optimize the approximation. We give a general version of the method which can be applied to moving grids with sliding interfaces and we present the results for a transient supersonic calculation of rotor-stator interaction.  相似文献   

18.
A three-field local projection stabilized (LPS) finite element method is developed for computations of a three-dimensional axisymmetric buoyancy driven liquid drop rising in a liquid column where one of the liquid is viscoelastic. The two-phase flow is described by the time-dependent incompressible Navier-Stokes equations, whereas the viscoelasticity is modeled by the Giesekus constitutive equation in a time-dependent domain. The arbitrary Lagrangian-Eulerian (ALE) formulation with finite elements is used to solve the governing equations in the time-dependent domain. Interface-resolved moving meshes in ALE allows to incorporate the interfacial tension force and jumps in the material parameters accurately. A one-level LPS based on an enriched approximation space and a discontinuous projection space is used to stabilize the numerical scheme. A comprehensive numerical investigation is performed for a Newtonian drop rising in a viscoelastic fluid column and a viscoelastic drop rising in a Newtonian fluid column. The influence of the viscosity ratio, Newtonian solvent ratio, Giesekus mobility factor, and the Eötvös number on the drop dynamics are analyzed. The numerical study shows that beyond a critical Capillary number, a Newtonian drop rising in a viscoelastic fluid column experiences an extended trailing edge with a cusp-like shape and also exhibits a negative wake phenomena. However, a viscoelastic drop rising in a Newtonian fluid column develops an indentation around the rear stagnation point with a dimpled shape.  相似文献   

19.
A new algorithm, which combines the spectral element method with elastic viscous splitting stress (EVSS) method, has been developed for viscoelastic fluid flows in a planar contraction channel. The system of spectral element approximations to the velocity, pressure, extra stress and the rate of deformation variables is solved by a preconditioned conjugate gradient method based on the Uzawa iteration procedure. The numerical approach is implemented on a planar four‐to‐one contraction channel for a fluid governed by an Oldroyd‐B constitutive equation. The behaviour of the Oldroyd‐B fluids in the contraction channel is investigated with various Weissenberg numbers. It is shown that numerical solutions obtained here agree well with experimental measurements and other numerical predictions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号