首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel route has been developed to fabricate ordered carbon mesoporous materials with well-dispersed, highly stable Pt nanoparticles of ca. 2-3 nm on the pore walls using platinum acetylacetonate as the co-feeding carbon and Pt precursor.  相似文献   

2.
In this paper, the unique properties of highly ordered mesoporous carbons modified glassy carbon electrode (OMCs/GE) are illustrated from comparison with carbon nanotubes modified glassy carbon electrode (CNTs/GE) for the electrochemical sensing applications. Electrochemical behaviors of eight kinds of inorganic and organic electroactive compounds were studied at OMCs/GE, which shows more favorable electron transfer kinetics than that at CNTs/GE. Especially, OMCs/GE exhibits remarkably strong and stable electrocatalytic response toward NADH compared with CNTs/GE. The ability of OMCs to promote electron transfer not only provides a new platform for the development of dehydrogenase-based bioelectrochemical devices, but also indicates a potential of OMCs in a wide range of sensing applications. OMCs prepared are the novel carbon electrode materials, exhibiting more favorable electrochemical reactivity than CNTs for the wide electrochemical sensing applications without pretreatments, while purification or end-opening processing was usually required in case of CNTs.  相似文献   

3.
Chun He  Xijun Hu 《Adsorption》2012,18(5-6):337-348
A?novel ordered mesoporous carbon containing basic nitrogen functional groups was synthesized by ammonia-tailoring at a temperature of 1173?K and was applied for reactive dye adsorption. The basic nitrogen-containing functional groups incorporated into the carbon surface could enhance the dispersive interactions between the carbon and dye molecules due to the electron-donating effect as well as the electrostatic interactions between the carbon surface and the anions of the dyes. It was found that this novel functionalized ordered mesoporous carbon could increase the adsorption capacity of reactive red 2 at 298?K by around 40?% and 100?% as compared with the unmodified carbon and a commercial activated carbon, respectively. The Freundlich isotherm showed better correlation with the experimental adsorption data of ammonia-tailored samples than the Langmuir isotherm due to the increased surface heterogeneity induced by the nitrogen-containing functional groups. Adsorption of reactive red 2 was an endothermic process as the adsorption capacity increased with increasing temperature. Low desorption efficiency revealed that the adsorption of reactive red 2 on the modified CMK-3 was extremely favorable, tending to be weakly reversible.  相似文献   

4.
By controlling the interaction between cationic surfactant micelles and ammonium metatungstate during the formation of mesoporous silica structure, highly dispersed tungsten carbide (WC) nanoparticles of 2.0 nm in diameter on mesoporous silica nanospheres were synthesized at lower concentration of ammonium metatungstate. With additional ammonium metatungstate, a novel mesoporous silica nanobamboo structure was formed with bimodal size-distributed WC nanoparticles, in which 2.0 nm WC was homogeneously distributed in nanobamboo's mesoporous silica wall and those with larger diameter (10.0-20.0 nm) were only formed on the nanobamboo's inner surface and at its internodes. The mesoporous silica nanobamboo also had a very high tensile strength due to its bamboo-like structure.  相似文献   

5.
Highly dispersed ceria-zirconia supported on ordered mesoporous alumina, showing higher thermal stability up to 900 °C, has been successfully synthesized via a sol-gel process associated with P123 as the template in ethanol solvent.  相似文献   

6.
The aggregation of nanoparticle catalysts is one of the main problems in catalytic reactions. In this study, a series of TiO2 nanoparticle catalysts with various dispersions were prepared and applied in the catalytic oxidation of dibenzothiophene (DBT) systems. Compositions and structures of the as‐prepared samples were analyzed by means of wide‐angle X‐ray diffraction, Raman and X‐ray photoelectron spectroscopies. The dispersions of TiO2 nanoparticles were controlled by calcining at various temperatures and verified using transmission electron microscopy. It was found that the activities of TiO2 nanoparticles in the catalytic oxidation of DBT were positively correlated with the dispersions. TiO2 nanoparticles calcined at 500 °C (500‐TiO2) showed the best catalytic activity and the oxidation of DBT reached 99.8% under mild conditions. Based on the results of GC–MS analysis, radical trapping experiments and electron spin resonance spectra, ?O2? radicals were proved to be the main active species in the oxidation process, and a mechanism is proposed. Meanwhile, the recycling performance of 500‐TiO2 was investigated, and no obvious decrease was observed after six recycles.  相似文献   

7.
高分散加氢脱硫催化剂制备及其对二苯并噻吩的催化性能   总被引:3,自引:0,他引:3  
近年来,柴油发动机产生的废气污染已成为一个严重问题,环境法规对燃油中的硫含量限制越来越严格.因此,开发高效的深度加氢脱硫催化剂成为当今的热门课题之一.在柴油馏分中,由于存在空间位阻作用,二苯并噻吩(DBT)及其烷基取代的衍生物是最难脱除的.传统的加氢脱硫(HDS)催化剂通常是将活性金属担载在γ-Al2O3上.近年来,介孔材料如MCM-41,SBA-15,HMS,KIT-1和KIT-6等也被用作加氢脱硫催化剂载体,其大的比表面积有利于活性组分分散,大的规则孔径有利于反应物和产物扩散.其中,KIT-1介孔分子筛具有三维短蠕虫状介孔结构和大的比表面积,其酸性和水热稳定性都高于MCM-41.然而,由于无定形的孔壁使得介孔分子筛的酸性和水热稳定性较差,限制了其在石油化工领域的应用.而介微孔复合分子筛兼具了微孔分子筛酸性强、水热稳定性好和介孔分子筛的孔道优势,因此一经出现就引起了研究者广泛关注.有研究认为,增加载体酸性有利于加氢及促进C-S键氢解反应.载体中的微孔可高效吸附氢分子,降低HDS过程所需的温度和压力,实现温和条件下燃油超深度脱硫.目前,已有研究者将Y-MCM-41,介孔ZSM-5及Beta-KIT-6等多级孔分子筛用作催化剂载体,并进行了加氢脱硫性能研究,取得了良好效果.我们曾利用双模板剂一步晶化法水热合成了介微孔复合分子筛ZK-1.该分子筛既具有与KIT-1相似的短蠕虫状三维介孔孔道,又具有ZSM-5的微孔结构.其介孔孔径为2.7 nm,微孔孔径为0.6nm.该分子筛具有良好的水热稳定性和较高的酸性.本文在上述研究基础上,以不同硅铝比的ZK-1为载体通过过量浸渍法担载Co,Mo活性组分制备了CoMo/ZK-1 (Si/Al=30)和CoMo/ZK-1 (Si/Al=40)催化剂,并以相同方法制备了CoMo/γ-Al2O3,CoMo/AlKIT-1,CoMo/ZSM-5和CoMo/Mix(等量的ZSM-5和AlKIT-1混合物)催化剂作为对比.催化剂的N2吸附和NH3程序升温脱附表征结果表明,CoMo/ZK-1具有高于其他催化剂的比表面积(约700 m2/g)和介微孔结构,介孔孔径和微孔孔径分别为2.3 nm和0.6-1 nm.CoMo/ZK-1的酸量大于相同硅铝比的CoMo/AlKIT-1,这是由于ZK-1的介孔孔壁上含有沸石结构单元.通过H2程序升温还原表征可知,CoMo/ZK-1的高温氢耗峰面积较CoMo/γ-Al2O3和CoMo/ZSM-5相比明显减小,表明在CoMo/ZK-1上难还原的组分数量减少,载体与金属之间的相互作用减弱,这有利于金属组分的还原和硫化.紫外-可见漫反射光谱表征结果表明,在ZSM-5表面形成了大量的聚合态氧化钼物种,这是由于载体表面积小,金属组分分散不均匀.Co2AlO4或Co2SiO4相的出现是由于载体与金属间存在较强的相互作用.以ZK-1和AlKIT-1为载体的催化剂则避免了该情况的发生.从高分辨透射电镜照片可知,MoS2在ZK-1表面分散很均匀,其堆垛层数(2.5-2.7层)和片晶长度(3.9-4.0 nm)都达到较理想的数值,有利于形成更多的Co-Mo-S(Ⅱ)活性相.以二苯并噻吩为模型化合物,采用固定床反应器考察了上述6种催化剂的加氢脱硫活性.催化剂的脱硫率从高到低依次为:CoMo/ZK-1 (40)> CoMo/ZK-1 (30)> CoMo/γ-Al2O3> CoMo/ZSM-5> CoMo/Mix> CoMo/AlKIT-1.在较温和的反应条件(320℃,3MPa,WHSV=5h-1)下,CoMo/ZK-1对DBT的脱硫率达到93%以上.其原因主要是:(1)ZK-1的大比表面积使Co,Mo活性组分高度分散在载体表面;(2)载体与金属之间较适中的相互作用有利于活性组分的还原与硫化;(3)ZK-1含有的沸石结构单元使其比AlKIT-1具有更多的酸中心,有利于提高HDS反应活性.  相似文献   

8.
9.
Highly dispersed gold nanoparticles within mesoporous thin films (MTFs) have been synthesized through a newly developed controllable strategy, in which (1,4)-bis(triethoxysilyl)propane tetrasufide (BPTS) organosiloxane coupling agent was co-assembled with tetraethyl orthosilicate (TEOS) to form organic groups functionalized mesoporous composite films followed with oxidization, ion-exchange with Au(en)2Cl3 (en: 1,2-ethanediamine) compound and calcination under hydrogen/nitrogen mixing atmosphere. Small-angle X-ray diffraction (XRD) characterization indicated that up to 10 mol% of BPTS could be incorporated into mesoporous hybrid films, and that would not breakup the structural integrity and long-range periodicity. The loaded gold nanoparticles were uniformly distributed due to the molecular level homogenous mixing of the BPTS precursor with TEOS, and its concentration could be controlled via the original ratio of BPTS to TEOS. The nanoparticles had a narrow size distribution with diameters in the size range of 3-7 nm through transmission electron microscopy (TEM) observation and underwent a slight size increase with the higher gold load level. An overall increase in the absorption intensity, a red shift of absorption peak, together with a comparatively narrower bandwidth could be observed at higher gold concentration within composite films from UV-vis spectra. Wide-angle XRD, TEM, X-ray photoelectron spectroscopy (XPS) and UV-vis spectra characterizations all agreed on the fact that the gold loading level could be controlled by the amount of BPTS in the starting sol for preparing MTFs.  相似文献   

10.
Doped mesoporous carbons comprising nitrogen, boron, and phosphorus (N, B, and P, respectively) were prepared as non-Pt catalysts for oxygen reduction reaction (ORR) in an acidic solution. The N-doped carbons were varied to increase their catalytic activity through by additionally doping of B and P. All the mesoporous carbons were synthesized by carbonizing polyaniline at 900 °C for the N species, while the B and P species were inserted into the carbon structure at the carbon growth step. The linear sweep voltammogram recorded in the acidic solution showed that the ORR activity of the N-doped carbon catalysts increased significantly after the addition of B. An approximately 19 % increase in the pyridinic N content at the carbon surface was observed, along with B-N-C moieties with a binding energy of 399.5 eV. The non-precious metal ORR catalysts were prepared via pyrolysis, with the insertion of an additional transition metal (iron, Fe). The deconvoluted X-ray photoelectron spectroscopy (XPS) results showed that the Fe-N peak was generated after the pyrolysis. The peak intensity of the quaternary N also increased compared with the pyridic and pyrrolic N, which indicates that Fe serves to catalyze the modification of N species. The numerical examinations showed that N- and B-doped mesoporous carbon (NBC) 1.5 % Fe had the highest limited current (4.94 mA/cm2), with the B-doped carbon still the most active mesoporous carbon catalyst for ORR. As a result, it can be said that Fe positively contributes to the formation of graphitic N, which is known to be an active site for ORR. The cyclic voltammetry results showed that the peak area of the NBC 1.5 % Fe catalyst was larger than that of the N-doped mesoporous carbon (NC) 1.5 % Fe catalyst. It was concluded that B doping enhances the ORR activity and the stability of carbon materials even after 1000 cycles under acidic conditions.  相似文献   

11.
Two mesoporous ordered carbon materials (MOCs) have been synthesized from silica templates by using sucrose as the carbon precursor. The textural characterization using Ar, N2, and CO2 adsorption combined with neutron diffraction showed that the two samples exhibit a significant microporous volume close to 0.5 cm3/g and an ordered network of mesopores. For both MCM48 and SBA15 templated carbons, adsorption first proceeds with the filling of micropores and then by the filling of mesopores with an adsorption energy close to the enthalpy of vaporization of bulk hydrogen. The hydrogen isosteric heat of adsorption in the micropores (6-8 kJ/mol) is significantly larger than that on the graphite surface (approximately 4 kJ/mol) but still too small for a reasonable use of these MOCs as hydrogen adsorbents for storage at room temperature. The neutron scattering study showed that the structure at 10 K of the adsorbed deuterium phase is poorly organized; it exhibits short and medium range orders of about 13 angstroms in micropores and about 20 angstroms in mesopores, respectively. The average distance between adsorbed molecules decreases with coverage by about 10%. In the mesopores, the diffracted line is consistent with a pseudohexagonal packing.  相似文献   

12.
The adsorption of amino acids on the surface of highly dispersed silica   总被引:1,自引:0,他引:1  
The adsorption of arginine, histidine, lysine, and ornithine on the surface of highly dispersed silica from aqueous solutions was studied as a function of pH. The equilibrium constants of the formation of surface complexes were calculated using the Stern model for the electrical double layer. It was shown that the possibility of adsorption of amino acids on the silica surface is determined by the presence of additional basic groups in their molecules.Translated from Kolloidnyi Zhurnal, Vol. 66, No. 6, 2004, pp. 733–738.Original Russian Text Copyright © 2004 by Vlasova, Golovkova.  相似文献   

13.
The effects of the humic acid (HA) nature and the activated carbon (AC) surface chemistry on the effectiveness of HA removal were investigated. Brown (BHA) and gray (GHA) humic acid fractions of different structure and physicochemical properties were tested in the adsorption process using mesoporous ACs. The modification of chemical structure and surface properties of AC was achieved by ammonization (AC/N) and hydrogen treatment (AC/H). Both approaches led to a decrease in the oxygen content followed by an increase in the carbon basicity, maintaining the porous texture of AC nearly unaltered. Over twice higher removal degree of BHA and GHA was observed for the modified ACs. The kinetics of adsorption of HA fractions have been discussed using the pseudo-second-order model and the intraparticle diffusion model. All ACs showed a higher adsorption capacity toward BHA compared to GHA, which is mainly attributed to the lower molecular weight of BHA. The shape of the equilibrium isotherms indicates a strong competition between water and HA molecules for adsorption sites of the carbon surface.  相似文献   

14.
The separation of transition metal Ni2+, Cu2+, Co2+, Zn2+, Cd2+ and Fe3+ in methanol was investigated by using different types of organic acids as complexing agents. In pure methanol, the weaker and simpler acetic, propionic, butyric and valeric acids could enhance metal ions selectivity by increasing acid concentration and metal ions could be separated with high efficiency. However, hydroxycarboxylic acids obviously made separation efficiency worse. The effect of mixed organic acids, mixture solvent (methanol-acetonitrile, methanol-water) on metal ions separation was discussed further. The advantages of using nonaqueous solvent over aqueous for metal ions separation were shown finally.  相似文献   

15.
Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15.  相似文献   

16.
A comparative study was carried out for highly ordered mesoporous materials using high resolution thermogravimetry (HR-TG) and adsorption techniques. These materials were synthesized with mixed surfactants of various alkyl chain lengths. For thermogravimetry measurements n-butanol was used to probe the adsorbent surface and high-resolution TG curves as well as their 1st and 2nd derivatives were obtained for this probe molecule. It is shown that the values of the mesopore volume and specific surface area evaluated from TG data are in a good agreement with those evaluated from low-temperature nitrogen adsorption isotherms. This comparative study was performed to confirm the usefulness of the HR-TG technique as an alternative method for evaluation of the mesopore volume and specific surface area of ordered mesoporous materials.  相似文献   

17.
A facile post-synthetic strategy was developed to functionalize the preformed hollow mesoporous silica spheres by encapsulating the molybdenum dioxide (MoO2) nanoparticles inside the interior cavity. Hollow mesoporous silica spheres were prepared and employed as carriers, and the encapsulation of MoO2 nanoparticles was achieved through a one-pot hydrothermal protocol. After characterization, the encapsulated MoO2 nanoparticles were certified to be ultrafine and highly dispersed, which greatly promoted the catalytic activity. The as-prepared catalysts were utilized in epoxidation of alkenes and exhibited as a promising catalyst in this reaction. After reacting for 10 h, the optimal catalyst MoO2@SiO2-1 achieved a conversion above 95% and selectivity above 95%, respectively. Moreover, the catalysts also exhibited good reusability, conversion of 78% and selectivity of 89% (reaction time 4 h) were still obtained after recycling for 5 times. Meanwhile, the employed facial and efficient hydrothermal approach could be expanded to other molybdenum modified heterogeneous catalysts in various applications.  相似文献   

18.
A facile synthesis of micro- and mesoporous carbons has been proposed using colloidal silica nanoparticles with diameter of ∼24 nm and poly(vinylidene chloride-co-vinyl chloride) (Saran) as a carbon precursor. The resulting carbons possessed large specific surface area, ∼800 m2/g, and approximately the same volume of micro- and mesopores, each about 50% of the total pore volume. While the size of micropores was around 1 nm, the large and uniform spherical mesopores (about 24 nm) resemble the diameters of silica colloids used. Nitrogen adsorption measurements proved that these mesopores were interconnected and accessible. The well-developed microporosity was created mainly by decomposition of Saran copolymer during carbonization.  相似文献   

19.
目前汽柴油中的含硫化合物是造成酸雨和PM2.5的重要原因之一.随着污染的日益严重,对汽柴油的深度脱硫受到越来越多的关注.环境保护组织颁布了较为严格的法律措施,规定硫含量低于10 ppm.然而,传统的加氢脱硫工艺(HDS)很难满足在深度HDS的同时辛烷值损失较少.为了减少辛烷值损失,脱硫技术和催化剂应具有较好的选择性.因此,在FCC汽油升级的过程中,减少辛烷值损失的超深度脱硫工艺是重要研究课题之一.目前,一些新型的深度脱硫技术包括吸附脱硫、氧化脱硫和生物脱硫.其中吸附脱硫具有高选择性、低能耗等优点,而反应吸附脱硫则被广泛研究和工业化生产.常见Ni/ZnO吸附剂利用高空速控制辛烷值损失,但频繁的再生过程影响催化剂的稳定性.目前,一种新型的Cu/ZnO吸附脱硫剂用于固定床中,具有较高的脱硫活性、稳定性和高选择性.目前,铜基吸附剂面临着ZnO的饱和硫容、稳定性及活性组分Cu结焦问题.Al2O3作为稳定剂可以提高反应活性和稳定性,其中有序介孔能够提供较大的比表面积、孔径、规整的孔结构和较好的分散活性组分的能力,从而有利于分子之间的扩散.本文利用一步溶剂蒸发自组装法合成了具有有序介孔的Cu-ZnO-Al2O3吸附剂.SXRD/WXRD结果,证实合成了具有有序介孔结构的Al2O3,且添加Cu和Zn物种后,其结构并未发生改变,但当Zn的添加量达到25 wt%时,其有序介孔结构发生改变.有序介孔的Cu-ZnO-Al2O3吸附剂具有较高的比表面积、孔容及孔径,添加过量的ZnO后,其比表面积明显降低.TEM和AADF-STEM结果发现,所制Cu-ZnO-Al2O3吸附剂具有规则的介孔结构,并且Cu,Zn,Al和O分散均匀,与XRD和BET结果一致.热重结果表明,有序介孔Cu-ZnO-Al2O3吸附剂具有较好的热稳定性.通过与商业Cu-ZnO-Al2O3吸附剂进行对比,有序介孔Cu-ZnO-Al2O3吸附剂具有较高脱硫活性、饱和硫容及稳定性.  相似文献   

20.
A composite metal-organic framework material Ag+/MOF-101 was synthesized and applied to adsorb dibenzothiophene (DBT) from model oils. The loading of Ag+ enhanced the deep adsorptive desulfurization capacity for DBT and significantly weaken the adsorption competitiveness of toluene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号