首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cyclic cylindrical 3d-4f tetranuclear structure, in which the 3d and 4f magnetic ions are arrayed alternately, has been found to be a suitable molecular design to produce a large magnetic moment and large magnetic anisotropy. Complexes 3-10 with the chemical formula [MLLn(hfac)2]2 ((MII, LnIII) = (Cu, Eu) (3), (Cu, Gd) (4), (Cu, Tb) (5), (Cu, Dy) (6), (Ni, Eu) (7), (Ni, Gd) (8), (Ni, Tb) (9), (Ni, Dy) (10)) have been synthesized, where H3L = 1-(2-hydroxybenzamido)-2-(2-hydroxy-3-methoxybenzylideneamino)ethane and Hhfac = hexafluoroacetylacetone. The powder X-ray diffractions and FAB-mass spectra demonstrated that these complexes assume a similar tetranuclear structure. The crystal structures of 4 and 5 showed that each complex has a cyclic cylindrical tetranuclear CuII2LnIII2 structure, in which the CuII complex functions as a "bridging ligand-complex" to two adjacent LnIII ions. The temperature-dependent magnetic susceptibilities from 2 to 300 K and the field-dependent magnetizations at 2 K from 0 to 5 T have been measured for four pairs of CuII2LnIII2 and NiII2LnIII2, in which compound NiII2LnIII2 containing diamagnetic NiII ion was used as the reference complex to evaluate the CuII-LnIII magnetic interaction. Comparison of the magnetic properties of the CuII2LnIII2 complex with those of the corresponding NiII2LnIII2 complex showed that the magnetic interaction between CuII and EuIII ions is weakly ferromagnetic and that between CuII and either of GdIII, TbIII, and DyIII ions is ferromagnetic. Complex CuII2GdIII2, 4, has an S = 8 spin ground state, due to the ferromagnetic spin coupling between SGd = 7/2 and SCu = 1/2 with coupling constants of J1 = +3.1 cm-1 and J2 = +1.2 cm-1. The magnetic measurements showed that compounds 5 and 6, CuII2LnIII2 (LnIII = Tb, Dy), exhibit large magnetic moments and large magnetic anisotropy due to the LnIII ion.  相似文献   

2.
3.
Two types of Cu(II)(hfac)2 and Mn(II)(hfac)2 complexes of N-(4-pyridylthio)-4-ethoxycarbonyl-2,6-bis(4-chlorophenyl)phenylaminyl (1) and N-(4-pyridylthio)-2,4,6-tris(4-chlorophenyl)phenylaminyl (2) were prepared and their X-ray crystallographic and magnetic studies were performed. Mixtures of Cu(II)(hfac)2 and 1 and Mn(II)(hfac)2 and 2 in anhydrous heptane-benzene solution gave 1 : 2 complexes of M(II)(hfac)2 (M = Cu, Mn) and 1 or 2 in 73-75% yields. For Cu(II)(hfac)2(1)2 and Mn(II)(hfac)2(2)2 X-ray crystallographic analyses were successfully performed. The magnetic behaviors for the two metal complexes were investigated with a SQUID magnetometer. The analyses for the chimolTvs. T plots of Cu(II)(hfac)2(1)2 were carried out by the numerical diagonalization of the Heisenberg Hamiltonian matrix (4096 x 4096 matrix) for the four repeating units of the complex (12-spin system). The exchange interaction between the copper(II) ion and the thioaminyl radicals is ferromagnetic (J1/kB = +28 K) and the interactions between the complexes is antiferromagnetic (J2/kB = -13 K). The magnetic behavior of Mn(II)(hfac)2(2)2 complexes is well analyzed with the theoretical equation of a 1/2-5/2-1/2 three-spin system taking the intermolecular interaction (theta) into account. The exchange interaction between the Mn(II) ion and the thioaminyl radicals is antiferromagnetic (J/kB = -4.2 K) and theta = -1.0 K. These magnetic behaviors could be well explained in terms of their crystal structures.  相似文献   

4.
Five trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)] (where MM'(2) = NiMn(2), CuMn(2), FeMn(2), NiFe(2), and FeFe(2); Hbpca = bis(2-pyridylcarbonyl)amine; and Hhfac = hexafluoroacetylacetone) were synthesized almost quantitatively by the reaction of [M(bpca)(2)] and [M'(hfac)(2)] in 1:2 molar ratio, and their structures and magnetic properties were investigated. Three complexes, with M' = Mn, crystallize in the same space group, Pna2(1), whereas two complexes, with M' = Fe, crystallize in P4(1), and complexes within each set are isostructural to one another. In all complexes, [M(bpca)(2)] acts as a bis-bidentate bridging ligand to form a linear trinuclear complex in which three metal ions are arranged in the manner M'-M-M'. The central metal ion is in a strong ligand field created by the N(6) donor set, and hence the Fe(II) in the [Fe(bpca)(2)] moiety is in a low-spin state. The terminal metal ions (M') are surrounded by O(6) donor sets with a moderate ligand field, which leads to the high-spin configuration of Fe(II). Three metal ions in all complexes are almost collinear, and metal-metal distances are ca. 5.5 A. The magnetic behavior of NiMn(2) and NiFe(2) shows a weak ferromagnetic interaction between the central Ni(II) ion and the terminal Mn(II) or Fe(II) ions. In these complexes, sigma-spin orbitals of the central Ni(II) ion and those of terminal metal ions have different symmetry about a 2-fold rotation axis through the Ni-N(amide)-M'(terminal) atoms, and this results in orthogonality between the neighboring sigma-spin orbitals and thus ferromagnetic interactions.  相似文献   

5.
Wang H  Liu Z  Liu C  Zhang D  Lü Z  Geng H  Shuai Z  Zhu D 《Inorganic chemistry》2004,43(13):4091-4098
Three new complexes of the formula M(2)L(2) derived from 2-(4-quinolyl)nitronyl nitroxide (4-QNNN) and M(hfac)(2) [M = Mn(II), Co(II), and Cu(II)], (4-QNNN)(2).[Mn(hfac)(2)](2) (1), (4-QNNN)(2).[Co(hfac)(2)](2).2H(2)O (2), and (4-QNNN)(2).Cu(hfac)(2).Cu'(hfac)(2) (3), were synthesized and characterized structurally as well as magnetically. Complexes 1 and 2 are four-spin complexes with quadrangle geometry, in which both the nitrogen atoms of quinoline rings and oxygen atoms of nitronyl nitroxides are involved in the formation of coordination bonds. For complex 3, however, the nitrogen atoms of quinoline rings are coordinated with Cu(II) ion to afford a three-spin complex, which is further linked to another molecule of Cu(hfac)(2) (referred to as Cu'(hfac)(2)) to form a 1D alternating chain. The magnetic behaviors of the three complexes were investigated. For complex 1, as the nitronyl nitroxides and Mn(II) ions are strongly antiferromagnetically coupled, consequently its temperature dependence of magnetic susceptibility was fitted to the model of spin-dimer with S = 2, yielding the intradimer magnetic exchange constant of J = -0.82 cm(-1). For complex 2, the temperature dependence of the magnetic susceptibility in the T > 50 K region was simulated with the model of two-spin unit with S(1) = 3/2 and S(2) = 1/2, leading to J = -321.9 cm(-1) for the magnetic interaction due to Co(II).O coordination bonding, D = -16.3 cm(-1) (the zero-field splitting parameter), g = 2.26, and zJ = -3.8 cm(-1) for the magnetic interactions between Co(II) ions and nitronyl nitroxides through quinoline rings and those between nitronyl nitroxides due to the short O.O short contacts. The temperature dependence of magnetic susceptibility of 3 was approximately fitted to a model described previously affording J(1) = -6.52 cm(-1) and J(2) = 3.64 cm(-1) for the magnetic interaction between nitronyl nitroxides and Cu(II) ions through the quinoline unit via spin polarization mechanism and the weak O.Cu coordination bonding, respectively.  相似文献   

6.
Bis(hexafluoroacetylacetonato(hfac))manganese(II) coordinated with di(4-pyridyl)phenylcarbene, Mn(II)(hfac)(2)[di(4-pyridyl)phenylcarbene] (1a) and its copper analogue Cu(II)(hfac)(2)[di(4-pyridyl)phenylcarbene] (2a) have attracted great interest from the viewpoint of photoinduced magnetism. The complexes 1a and 2a are regarded as the new d-pi-p conjugated systems containing transition metal ion and carbene as spin sources. The magnetic measurements demonstrated antiferromagnetic and ferromagnetic effective exchange interactions for 1a and 2a, respectively. Here, we have performed UHF and UHF plus DFT hybrid calculations (UB3LYP) to elucidate the nature of the through-bond effective exchange interaction between Mn(II) (or Cu(II)) ion and triplet carbene sites in 1a (or 2a) and their model complexes. The natural orbital analysis of the UHF and UB3LYP solutions and CASCI calculations for the simplest models of 1a and 2a are performed to elucidate relative contributions of spin polarization (SP) and spin delocalization (SD) (or superexchange (SE)) interactions for determination of the sign of J(ab) values. Mn(II) carbene complex 1a shows an antiferromagnetic interaction because of the pi-type antiferromagnetic SE effect and the pi-type SP effect, while the positive J(ab) value for Cu(II) carbene complex 2a can be explained by the fact that ferromagnetic SE and SP interactions due to orbital orthogonality are more effective than the sigma-type antiferromagnetic SE interaction. The ligand coordination effects of both 4-pyridylcarbene and hfac play crucial roles for determination of the J(ab) values, but the ligand coordination effect of hfac is more important for the active control of charge or spin density distributions than that of 4-pyridylcarbene. The spin alignment mechanisms of 1a and 2a are indeed consistent with SE plus SP rule, which is confirmed with the shape and symmetry of natural orbitals, together with charge and spin density distributions.  相似文献   

7.
Two mononuclear copper(II) complexes with the unsymmetrical tridentate ligand 2-[((imidazol-2-ylmethylidene)amino)ethyl]pyridine (HL), [Cu(HL)(H2O)](ClO4)2.2H2O (1) and [Cu(HL)Cl2] (2), have been prepared and characterized. The X-ray analysis of 2 revealed that the copper(II) ion assumes a pentacoordinated square pyramidal geometry with an N3Cl2 donor set. When 1 and 2 are treated with an equimolecular amount of potassium hydroxide, the deprotonation of the imidazole moiety promotes a self-assembled process, by coordination of the imidazolate nitrogen atom to a Cu(II) center of an adjacent unit, leading to the polynuclear complexes [[Cu(L)(H2O)](ClO4)]n (3) and [[Cu(L)Cl].2H2O]n (4). Variable-temperature magnetic data are well reproduced for one-dimensional infinite regular chain systems with J = -60.3 cm(-1) and g = 2.02 for 3 and J = -69.5 cm(-1) and g = 2.06, for 4. When 1 is used as a "ligand complex" for [M(hfac)2] (M = Cu(II), Ni(II), Mn(II), Zn(II)) in a basic medium, only the imidazolate-bridged trinuclear complexes [Cu(L)(hfac)M(hfac)2Cu(hfac)(L)] (M = Zn(II), Cu(II)) (5, 6) can be isolated. Nevertheless, the analogous complex containing Mn(II) as the central metal (7) can be prepared from the precursor [Cu(HL)Cl2] (2). All the trinuclear complexes are isostructural. The structures of 5 and 6 have been solved by X-ray crystallographic methods and consist of well-isolated molecules with Ci symmetry, the center of symmetry being located at the central metal. Thus, the copper(II) fragments are in trans positions, leading to a linear conformation. The magnetic susceptibility data (2-300 K), which reveal the occurrence of antiferromagnetic interactions between copper(II) ions and the central metal, were quantitatively analyzed for symmetrical three-spin systems to give the coupling parameters JCuCu = -37.2 and JCuMn = -3.7 cm(-1) with D = +/-0.4 cm(-1) for 6 and 7, respectively. These magnetic behaviors are compared with those for analogous systems and discussed on the basis of a localized-orbital model of exchange interactions.  相似文献   

8.
A new one-dimensional chain complex, Mn(hfac)(2)-bridged [2-(3-pyridyl)(nitronyl nitroxide)Mn(hfac)(2)](2), was prepared and its structure and magnetic properties were elucidated; the complex exhibited a large antiferromagnetic interaction of J(1)=-185 K between the three Mn(ii) atoms and the two nitronyl nitroxides to give S=13/2 spin units and a small ferromagnetic interaction of J(3)'=+0.02 K between these spin units at low temperatures (50-1.9 K), compatible with the theoretical analysis for model compounds.  相似文献   

9.
Two tetranuclear Mn complexes with an average Mn oxidation state of +2.5 have been prepared. These valence isomers have been characterized by a combination of X-ray crystallography, X-ray absorption spectroscopy, and magnetic susceptibility. The Mn(II)3Mn(IV) tetramer has the Mn ions arranged in a distorted tetrahedron, with an S = 6 ground spin state, dominated by ferromagnetic exchange among the manganese ions. The Mn(II)2Mn(III)2 tetramer also has a distorted tetrahedral arrangement of Mn ions but shows magnetic behavior, suggesting that it is a single-molecule magnet. The X-ray absorption near-edge structure (XANES) spectra for the two complexes are similar, suggesting that, while Mn XANES has sufficient sensitivity to distinguish between trinuclear valence isomers (Alexiou et al. Inorg. Chem. 2003, 42, 2185), similar distinctions are difficult for tetranuclear complexes such as that found in the photosynthetic oxygen-evolving complex.  相似文献   

10.
The title compounds form an iso structural series and are isomorphic with other [MPy4X2]-2Py clathrates (XRD, KM4 diffractometer, cell parameters and space group Ccca from 17–80 reflections). In the clathrate [NiPy4(NCO)2]-2Py studied in detail (XRD, CAD-4 diffractom eter, λCuKα, Ω/2θ scan mode, θmax = 78‡, 990 strong reflections, 104 parameters, R = 0.053), the host molecule has 222 symmetry, and the twofold axes run along the coordination bonds. The transoctahedral environment of nickel consists of six nitrogen atoms of four pyridine and two isocyanate ligands. The coordination polyhedron is slightly distorted due to changes in the bond lengths. The molecule has a propeller conformation. The guest molecules lie in the cavities of the crystal structure in conformity with the van der Waals type of packing. The host complex [NiPy4(NCO)2] (XRD, CAD-4 diffractometer, 4615 strong reflections, 560 parameters, R-0.037) crystallizes in the triclinic crystal system (space group P1) with two independent asymmetric molecules in the unit cell. The molecular structure is analogous to that in the ciathrate phase, but the coordination angles are severely distorted; one of the molecules acquires a distorted propeller conformation, and the other, a centrosvmmetric conformation, which is less favorable. While being structurally identical, the [MPy4(NCO)2]-2Py clathrates differ heavily in the properties. The first four complexes dissociate to host complexes, and their thermal stability changes in the sequence Mn< Fe< Co< Ni; the Cu and Zn clathrates decompose in one step to dipyridine complexes with decomposition of host complexes. Decomposition of the Cd ciathrate follows one of these patterns depending on conditions. The results are compared with those for other known systems. Synthetic procedures are given. Translated fromZhurnal Strukturnoi Khimii, Vol. 40, No. 5, pp. 935–953, September–October, 1999.  相似文献   

11.
New synthesis procedures are described to tetranuclear manganese carboxylate complexes containing the [Mn(4)O(2)](8+) or [Mn(4)O(3)X](6+) (X(-) = MeCO(2)(-), F(-), Cl(-), Br(-), NO(3)(-)) core. These involve acidolysis reactions of [Mn(4)O(3)(O(2)CMe)(4)(dbm)(3)] (1; dbm is the anion of dibenzoylmethane) or [Mn(4)O(2)(O(2)CEt)(6)(dbm)(2)] (8) with HX (X(-) = F(-), Cl(-), Br(-), NO(3)(-)); high-yield routes to 1 and 8 are also described. The X(-) = NO(3)(-) complexes [Mn(4)O(3)(NO(3))(O(2)CR)(3)(R'(2)dbm)(3)] (R = Me, R' = H (6); R = Me, R' = Et (7); R = Et, R' = H (12)) represent the first synthesis of the [Mn(4)O(3)(NO(3))](6+) core, which contains an unusual eta(1):mu(3)-NO(3)(-) group. Treatment of known [Mn(4)O(2)(O(2)CEt)(7)(bpy)(2)](ClO(4)) with HNO(3) gives [Mn(4)O(2)(NO(3))(O(2)CEt)(6)(bpy)(2)](ClO(4)) (15) containing a eta(1):eta(1):mu-NO(3)(-) group bridging the two body Mn(III) ions of the [Mn(4)O(2)](8+) butterfly core. Complex 7 x 4CH(2)Cl(2) crystallizes in space group P2(1)2(1)2(1) with (at -168 degrees C) a = 21.110(3) A, b = 22.183(3) A, c = 15.958(2) A, Z = 4, and V = 7472.4(3) A(3). Complex 15 x (3)/(2)CH(2)Cl(2) crystallizes in space group P2(1)/c with (at -165 degrees C) a = 26.025(4) A, b = 13.488(2) A, c = 32.102(6) A, beta = 97.27(1) degrees, Z = 8, and V = 11178(5) A(3). Complex 7 contains a [Mn(4)(mu(3)-O)(3)(mu(3)-NO(3))](6+) core (3Mn(III), Mn(IV)) as seen for previous [Mn(4)O(3)X](6+) complexes. Complex 15 contains a butterfly [Mn(4)(mu(3)-O)(2)](8+) core. (1)H NMR spectra have been recorded for all complexes reported in this work and the various resonances assigned. All complexes retain their structural integrity on dissolution in chloroform and dichloromethane. Magnetic susceptibility (chi(M)) data were collected on 12 in the 5-300 K range in a 10.0 kG (1 T) field. Fitting of the data to the theoretical chi(M) vs T expression appropriate for a [Mn(4)O(3)X](6+) complex of C(3)(v)() symmetry gave J(34) = -23.9 cm(-)(1), J(33) = 4.9 cm(-)(1), and g = 1.98, where J(34) and J(33) refer to the Mn(III)Mn(IV) and Mn(III)Mn(III) pairwise exchange interactions, respectively. The ground state of the molecule is S = 9/2, as found previously for other [Mn(4)O(3)X](6+) complexes. This was confirmed by magnetization data collected at various fields and temperatures. Fitting of the data gave S = 9/2, D = -0.45 cm(-1), and g = 1.96, where D is the axial zero-field splitting parameter.  相似文献   

12.
The preparation, X-ray crystal structure, EPR data, and magnetic measurement of [Cu(II)(hfac)(2)(TTF-py)(2)](PF(6)).2CH(2)Cl(2), a novel material where the conducting and the localized spin systems are covalently linked through conjugated bridges, are reported. The partial oxidation of the TTF-type organic donor ligand yielded the first radical cation salt of a paramagnetic transition metal complex. Moreover, this compound shows a mixed valence state at the unimolecular level, and additionally, the arrangement of the molecules in the crystal structure revealed the presence of isolated mixed valence TTF dimers.  相似文献   

13.
Manson JL 《Inorganic chemistry》2003,42(8):2602-2605
When stoichiometric amounts of Cu(hfac)(2).H(2)O and 1,4,5-triazanaphthalene (tan) were combined in methanol, green crystals of Cu(hfac)(2)(tan) were formed. Its structure was determined at low temperature (P2(1)/c; a = 8.3308(4) A, b = 14.8945(7) A, c = 18.3046(10) A, beta = 99.298(2) degrees, V = 2241.5(3) A(3)) and found to consist of a novel kinked-chain arrangement where N atoms on opposite sides of the tan ligand bridge Cu(hfac)(2) moieties together. Long axial Cu-N bonds lead to rather weak (J/k(B) = -0.06(5) K) antiferromagnetic interactions according to a Bonner-Fisher fit of the magnetic susceptibility data. The magnetic behavior demonstrated by Cu(hfac)(2)(tan) contrasts markedly with that of Cu(NO(3))(2)(tan), as reported by Hatfield and co-workers, and is attributed to the differing orientations of the Cu d(x)2(-)(y)2 magnetic orbital.  相似文献   

14.
A density functional theory study of the structure of the title compounds with the divalent metal ions in their high-spin ground state, obtained using B3LYP/6-311++G(d,p) in vacuo and in aqueous solution simulated using a polarized continuum medium, is reported for the first time. The modeling reproduces the pseudo pentagonal bipyramidal crystallographic structures very well, including some asymmetry in the equatorial bonds lengths to the crown ether O donors. The very marked asymmetry in the Ni(2+) structure due to a Jahn-Teller distortion of a d(8) system in a D(5h) ligand field is also well reproduced. The gas phase binding energies of the complexes follow the order Mn(2+) < Fe(2+) < Co(2+) < Ni(2+) < Cu(2+) > Zn(2+), in precise agreement with the Irving-William series. Both the NPA and Bader charges show there is ligand-to-metal charge transfer; however, the values obtained from the NPA procedure, unlike those obtained from Bader's quantum theory of molecules approach, do not correlate with the electronegativity of the metal ions, the stabilization energies of the solvated complexes or the ionic radii of the metal ions, and so appear to be less reliable. The nature of the bonding between the ligands and the metal ions has been explored using the topological properties of the electron charge density. The metal-ligand bond distances were found to be exponentially correlated with the electron charge density, its Laplacian, and with its curvature in the direction of the bond path at M-O bond critical points. While the bonding with coordinated H(2)O is predominantly ionic, that to the crown ether donor atoms has some covalent character the extent of which increases across the first transition series. The delocalization indices of M-O bonds in these complexes correlate reasonably well with the electron density and its Laplacian at the bond critical points; this therefore provides a rapid and computationally very efficient way of determining these properties, from which insight into the nature of the bonding can be obtained, obviating the need for time-consuming integration over atomic basins.  相似文献   

15.
Yang GD  Dai JC  Lian YX  Wu WS  Lin JM  Hu SM  Sheng TL  Fu ZY  Wu XT 《Inorganic chemistry》2007,46(19):7910-7916
Two new compounds, [Ph3PCH2Ph]2[Zn3(tp)3Cl2] (1) and Ni3(tma)2(H2O)8 (2) (tp = terephthalate, tma = trimesate), are metal-polycarboxylate coordination polymers prepared by similar hydrothermal synthesis techniques. X-ray single-crystal structural analysis shows that both compounds crystallize in the 2D claylike lamellar architectures, in which 1 possesses the interlayer [Ph3PCH2Ph]+ exchangeable cation and has been confirmed by PXRD patterns. 1 (C74H56Cl2O12P2Zn3) belongs to monoclinic P21/c, Z = 2 (a = 18.956(1) A, b = 10.2697(5) A, c = 17.067(1) A, beta = 99.486(4) degrees ). 2 (C18H22O20Ni3) is attributed to triclinic P, Z = 1 (a = 6.6643(8) A, b = 9.622(1) A, c = 10.089(1) A, alpha = 112.675(2) degrees , beta = 94.007(1) degrees, gamma = 106.411(2) degrees ). Linear metal trinuclear clusters bridged by rigid linear tp ligands for 1 and trigonal tma ligands for 2 give rise to a novel 2D 6-linked (3,6) topological anionic network in 1 and an interesting 2D 3,6-linked molybdenite topological neutral network in 2, respectively. Both compounds exhibit intense fluorescent emission bands at 410 nm (lambda(exc) = 355 nm) for 1 and 398 nm (lambda(exc) = 300 nm) for 2 in the solid state at room temperature.  相似文献   

16.
Mononuclear Ni(II) complex (C30H30NiN4O8S2) (I) has been obtained with 1: 2 metal/ligand ratio and characterized by single crystal X-ray diffraction (CIF file CCDC no. 1040830), IR, UV-Vis spectroscopic techniques and DFT. X-ray results show that complex I crystallizes in the monoclinic system, space group P21/n with four molecules in the unit cell. In structure I, the coordination around Ni atom is distorted square planar. In addition to the crystal structure, the molecular geometry, vibrational frequencies, molecular electrostatic potential, and frontier molecular orbital analysis of compound I in the ground state have been calculated using the B3LYP/6-311G and B3LYP/3-21G methods. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the observed experimental bands.  相似文献   

17.
Mn(hfac)(2) complexes of [2-(5-pyrimidinyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H- imidazoline-1-oxyl 3-oxide] (1) and its 2-(3-pyridyl) analogue (2) were prepared. Both complexes formed similar dimer structures. However, their packing patterns were considerably different. The pyrimidine dimers were aligned to form a linear chain structure, and each dimer was weakly bound by two sets of O6-C2 short contacts. In the pyridine dimer complex, two structurally similar but independent dimers were alternatively arranged, and two dimer-dimer contacts, O6-C2 (3.13 A) and O6-C3 (3.30 A), were observed. The pyrimidine complex showed strong antiferromagnetic behavior in the high temperature region (150-300 K) and weak ferromagnetic behavior below 100 K. Two models were used to analyze these magnetic properties. One is a quintet-septet thermal equilibrium model with mean-field approximation, which can reproduce the round minimum observed at about 150 K in chi(p)T plots (J(1)/k(B) = -148 +/- 2 K with theta = +2.5 +/- 0.1 K). The other is a ferromagnetic S = 2 chain model to fit the chi(p)T values in the lower temperature region (J(S=2)/k(B) = +0.31 +/- 0.01 K). The pyridine complex showed antiferromagnetic interactions both in the high and low temperature regions. The magnetic behavior was similarly analyzed with the following parameters: J(1)/k(B) = -140 +/- 2 K with theta = -0.55 +/- 0.05 K, and J(S=2)/k(B) = -0.075 +/- 0.003 K. The ligand-ligand interactions for both of the complexes were theoretically analyzed. The calculated results agreed well with the experiments. The stronger antiferromagnetic behavior observed in both the complexes at high temperatures was attributed to the magnetic interaction between the Mn(II) and the coordinating nitroxide oxygen atom. The weaker ferromagnetic interaction, J(S=2)/k(B) = +0.31 +/- 0.01 K, in the pyrimidine complex was attributed to the coulombic O6-C2 contact. Antiferromagnetic interaction J(S=2)/k(B) = -0.075 +/- 0.003 K in the pyridine complex was attributed to the O6-C3 contact.  相似文献   

18.
In this article a new coated platinum Cu2+ ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L1) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10−7-1.0 × 10−1 mol L−1) and a low detection limit of 9.8 × 10−8 mol L−1of Cu(NO3)2. It has a Nernstian response with slope of 29.54 ± 1.62 mV decade−1 and it is applicable in the pH range of 4.0-6.0 without any divergence in potentioal. The coated electrode has a short response time of approximately 9 s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu2+ ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu2+ ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu2+ ion with EDTA.  相似文献   

19.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

20.
Oxidative addition of diorganyl diselenides to the coordinatively unsaturated, low-valent transition-metal-carbonyl fragment [Mn(CO)(5)](-) produced cis-[Mn(CO)(4)(SeR)(2)](-). The complex cis-[PPN][Mn(CO)(4)(SePh)(2)] crystallized in triclinic space group P&onemacr; with a = 10.892(8) ?, b = 10.992(7) ?, c = 27.021(4) ?, alpha = 101.93(4) degrees, beta = 89.79(5) degrees, gamma = 116.94(5) degrees, V = 2807(3) ?(3), and Z = 2; final R = 0.085 and R(w) = 0.094. Thermolytic transformation of cis-[Mn(CO)(4)(SeMe)(2)](-) to [(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)](-) was accomplished in high yield in THF at room temperature. Crystal data for [Na-18-crown-6-ether][(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)]: trigonal space group R&thremacr;, a = 13.533(3) ?, c = 32.292(8) ?, V = 5122(2) ?(3), Z = 6, R = 0.042, R(w) = 0.041. Oxidation of Co(2+) to Co(3+) by diphenyl diselenide in the presence of chelating metallo ligands cis-[Mn(CO)(4)(SePh)(2)](-) and cis-[Mn(CO)(4)(TePh)(2)](-), followed by a bezenselenolate ligand rearranging to bridge two metals and a labile carbonyl shift from Mn to Co, led directly to [(CO)(4)Mn(&mgr;-TePh)(2)Co(CO)(&mgr;-SePh)(3)Mn(CO)(3)]. Crystal data: triclinic space group P&onemacr;, a = 11.712(3) ?, b = 12.197(3) ?, c = 15.754(3) ?, alpha = 83.56(2) degrees, beta = 76.13(2) degrees, gamma = 72.69(2) degrees, V = 2083.8(7) ?(3), Z = 2, R = 0.040, R(w) = 0.040. Addition of fac-[Fe(CO)(3)(SePh)(3)](-) to fac-[Mn(CO)(3)(CH(3)CN)(3)](+) resulted in formation of (CO)(3)Mn(&mgr;-SePh)(3)Fe(CO)(3). This neutral heterometallic complex crystallized in monoclinic space group P2(1)/n with a = 8.707(2) ?, b = 17.413(4) ?, c = 17.541(4) ?, beta = 99.72(2) degrees, V = 2621(1) ?(3), and Z = 4; final R = 0.033 and R(w) = 0.030.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号