首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple methodology for a high‐resolution scheme to be applied to compressible multicomponent flows with shock waves is investigated. The method is intended for use with direct numerical simulation or large eddy simulation of compressible multicomponent flows. The method dynamically adds non‐linear artificial diffusivity locally in space to capture different types of discontinuities such as a shock wave, contact surface or material interface while a high‐order compact differencing scheme resolves a broad range of scales in flows. The method is successfully applied to several one‐dimensional and two‐dimensional compressible multicomponent flow problems with shock waves. The results are in good agreement with experiments and earlier computations qualitatively and quantitatively. The method captures unsteady shock and material discontinuities without significant spurious oscillations if initial start‐up errors are properly avoided. Comparisons between the present numerical scheme and high‐order weighted essentially non‐oscillatory (WENO) schemes illustrate the advantage of the present method for resolving a broad range of scales of turbulence while capturing shock waves and material interfaces. Also the present method is expected to require less computational cost than popular high‐order upwind‐biased schemes such as WENO schemes. The mass conservation for each species is satisfied due to the strong conservation form of governing equations employed in the method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A study of viscous and inviscid hypersonic flows using generalized upwind methods is presented. A new family of hybrid flux-splitting methods is examined for hypersonic flows. The hybrid method is constructed by the superposition of the flux-vector-splitting (FVS) method and second-order artificial dissipation in the regions of strong shock waves. The conservative variables on the cell faces are calculated by an upwind extrapolation scheme to third-order accuracy. A second-order-accurate scheme is used for the discretization of the viscous terms. The solution of the system of equations is achieved by an implicit unfactored method. In order to reduce the computational time, a local adaptive mesh solution (LAMS) method is proposed. The LAMS method combines the mesh-sequencing technique and local solution of the equations. The local solution of either the Euler or the NAVIER-STOKES equations is applied for the region of the flow field where numerical disturbances die out slowly. Validation of the Euler and NAVIER-STOKES codes is obtained for hypersonic flows around blunt bodies. Real gas effects are introduced via a generalized equation of state.  相似文献   

3.
强激波和强接触间断的数值模拟一直是计算流体力学里一个富有挑战性的课题,它们是很多实际流动的基础。三阶迎风紧致格式是一种具有较高分辨率的高精度方法,但是在计算激波时仍有数值振荡产生。本文根据数值解的群速度特性,在三阶迎风紧致格式的基础上提出了一种群速度控制格式,使得能够正确模拟含有强激波和强接触间断的复杂流动。在此基础上构造了求解包含大压力比和密度比的二维界面问题的数值方法。计算结果表明,方法对激波和接触间断的分辨效果是令人满意的。  相似文献   

4.
Developing shock-capturing difference methods   总被引:1,自引:1,他引:1  
A new shock-capturing method is proposed which is based on upwind schemes and flux-vector splittings. Firstly, original upwind schemes are projected along characteristic directions. Secondly, the amplitudes of the characteristic decompositions are carefully controlled by limiters to prevent non-physical oscillations. Lastly, the schemes are converted into conservative forms, and the oscillation-free shock-capturing schemes are acquired. Two explicit upwind schemes (2nd-order and 3rd-order) and three compact upwind schemes (3rd-order, 5th-order and 7th-order) are modified by the method for hyperbolic systems and the modified schemes are checked on several one-dimensional and two-dimensional test cases. Some numerical solutions of the schemes are compared with those of a WENO scheme and a MP scheme as well as a compact-WENO scheme. The results show that the method with high order accuracy and high resolutions can capture shock waves smoothly.  相似文献   

5.
In this work, first‐order upwind implicit schemes are considered. The traditional tridiagonal scheme is rewritten as a sum of two bidiagonal schemes in order to produce a simpler method better suited for unsteady transcritical flows. On the other hand, the origin of the instabilities associated to the use of upwind implicit methods for shock propagations is identified and a new stability condition for non‐linear problems is proposed. This modification produces a robust, simple and accurate upwind semi‐explicit scheme suitable for discontinuous flows with high Courant–Friedrichs–Lewy (CFL) numbers. The discretization at the boundaries is based on the condition of global mass conservation thus enabling a fully conservative solution for all kind of boundary conditions. The performance of the proposed technique will be shown in the solution of the inviscid Burgers' equation, in an ideal dambreak test case, in some steady open channel flow test cases with analytical solution and in a realistic flood routing problem, where stable and accurate solutions will be presented using CFL values up to 100. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A discontinuity-capturing scheme of finite element method (FEM) is proposed. The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows, which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number. In particular, a new testing variable, i.e., the disturbed kinetic energyE, is suggested and used in the adaptive mesh computation, which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number. Based on several calculated examples, this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows. The project supported by the National Natural Science Foundation of China (10125210), the Hundred-Talent Programme of the Chinese Academy of Sciences and the Innovation Project of the Chinese Academy of Sciences (KJCX-SW-L04, KJCX2-SW-L2)  相似文献   

7.
A numerical study of laminar flows is carried out to examine the performance of two second-order discretization schemes: a total variation diminishing scheme and a second-order upwind scheme. The former has the same form as the standard first-order hybrid central upwind scheme, but with a numerical diffusion reduced by the Van Leer limiter; the latter is based on the linear extrapolation of cell face values using the two upwind neighbors. A collocated grid arrangement is used; oscillations which could be generated by pressure–velocity decoupling are avoided via the Rhie–Chow interpolation. Two iterative solution methods are used: (i) the deferred correction procedure proposed by Khosla and Rubin and (ii) implicit treatment of the second-order upwind contribution. Three two-dimensional laminar test cases are considered for assessment: the plane lid-driven cavity, the plane backward facing step and the axisymmetric pipe with sudden contraction. Experimental data are available for the two last cases. Both the total variation diminishing and the second-order upwind schemes give wiggle-free results and can predict the flowfields more accurately than the standard first-order hybrid central upwind scheme. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the finite difference weighted essentially non-oscillatory (WENO) scheme is incorporated into the recently developed four kinds of lattice Boltzmann flux solver (LBFS) to simulate compressible flows, including inviscid LBFS I, viscous LBFS II, hybrid LBFS III and hybrid LBFS IV. Hybrid LBFS can automatically realize the switch between inviscid LBFS I and viscous LBFS II through introducing a switch function. The resultant hybrid WENO–LBFS scheme absorbs the advantages of WENO scheme and hybrid LBFS. We investigate the performance of WENO scheme based on four kinds of LBFS systematically. Numerical results indicate that the devopled hybrid WENO–LBFS scheme has high accuracy, high resolution and no oscillations. It can not only accurately calculate smooth solutions, but also can effectively capture contact discontinuities and strong shock waves.  相似文献   

9.
An implicit, upwind arithmetic scheme that is efficient for the solution of laminar, steady, incompressible, two-dimensional flow fields in a generalised co-ordinate system is presented in this paper. The developed algorithm is based on the extended flux-vector-splitting (FVS) method for solving incompressible flow fields. As in the case of compressible flows, the FVS method consists of the decomposition of the convective fluxes into positive and negative parts that transmit information from the upstream and downstream flow field respectively. The extension of this method to the solution of incompressible flows is achieved by the method of artificial compressibility, whereby an artificial time derivative of the pressure is added to the continuity equation. In this way the incompressible equations take on a hyperbolic character with pseudopressure waves propagating with finite speed. In such problems the ‘information’ inside the field is transmitted along its characteristic curves. In this sense, we can use upwind schemes to represent the finite volume scheme of the problem's governing equations. For the representation of the problem variables at the cell faces, upwind schemes up to third order of accuracy are used, while for the development of a time-iterative procedure a first-order-accurate Euler backward-time difference scheme is used and a second-order central differencing for the shear stresses is presented. The discretized Navier–Stokes equations are solved by an implicit unfactored method using Newton iterations and Gauss–Siedel relaxation. To validate the derived arithmetical results against experimental data and other numerical solutions, various laminar flows with known behaviour from the literature are examined. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
This paper considers the streamline‐upwind Petrov/Galerkin (SUPG) method applied to the compressible Euler and Navier–Stokes equations in conservation‐variable form. The spatial discretization, including a modified approach for interpolating the inviscid flux terms in the SUPG finite element formulation, is briefly reviewed. Of particular interest is the behavior of the shock‐capturing operator, which is required to regularize the scheme in the presence of strong, shock‐induced gradients. A standard shock‐capturing operator that has been widely used in previous studies by several authors is presented and discussed. Specific modifications are then made to this standard operator that is designed to produce a more physically consistent discretization in the presence of strong shock waves. The actual implementation of the term in a finite‐dimensional approximation is also discussed. The behavior of the standard and modified scheme is then compared for several supersonic/hypersonic flows. The modified shock‐capturing operator is found to preserve enthalpy in the inviscid portion of the flowfield substantially better than the standard operator. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

11.
寻找一种能够准确计算以涡为主要特征的复杂流场和克服尾迹耗散问题的数值方法,一直是旋翼空气动力学研究的热点和难点。本文发展了一种基于高阶迎风格式计算悬停旋翼无粘流场的隐式数值方法。无粘通量采用Roe通量差分分裂格式,为提高精度,使用五阶WENO格式进行左右状态插值,并与MUSCL插值进行比较。为提高收敛到定常解的效率,时间推进采用LU-SGS隐式方法。用该方法对一跨声速悬停旋翼无粘流场进行了数值计算,数值结果表明WENO-Roe的激波分辨率高于MUSCL-Roe,体现出了格式精度的提高对计算结果的改善,LU-SGS隐式方法的计算效率比5步Runge-Kutta显式方法的高。  相似文献   

12.
In this work a new ghost fluid method (GFM) is introduced for multimaterial compressible flow with arbitrary equation of states. In previous researches, it has been shown that accurate wave decomposition at the interface by solving a Riemann problem alleviates the shortcomings of the standard GFM in dealing with the impingement of strong waves onto the interface but these Riemann‐based GFM are not consistent with the framework of the central WENO scheme in which the emphasis is to avoid solving Riemann problems at control volume faces and enjoy the black box property (being independent of equation of state). The aim of this work is to develop a new GFM that is completely consistent with the methodology behind central schemes; that is, it enjoys a black box property. The capabilities of the proposed GFM method is shown by solving various types of multimaterial compressible flows including gas–gas, gas–water and fluid–solid interfaces interacting with strong shock waves in one and two space dimensions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A high‐resolution upwind compact method based on flux splitting is developed for solving the compressive Euler equations. The convective flux terms are discretized by using the modified advection upstream splitting method (AUSM). The developed scheme is used to compute the one‐dimensional Burgers equation and four different example problems of supersonic compressible flows, respectively. The results show that the high‐resolution upwind compact scheme based on modified AUSM+ flux splitting can capture shock wave and other discontinuities, obtain higher resolution and restrain numerical oscillation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
数值摄动算法及其CFD格式   总被引:2,自引:1,他引:1  
高智 《力学进展》2010,40(6):607-633
作者提出的数值摄动算法把流体动力学效应耦合进NS方程组和对流扩散(CD)方程离散的数学基本格式(MBS),特别是耦合进最简单的MBS即一阶迎风和二阶中心格式之中,由此构建成一系列新格式,称呼方便和强调耦合流体动力学起见,称它们为流体力学基本格式(FMBS)。构建FMBS的主要步骤是把MBS中的通量摄动重构为步长的幂级数,利用空间分裂和导出的高阶流体动力学关系式,把结点变量展开成Taylor级数,通过消除重构格式修正微分方程的截断误差诸项求出幂级数的待定系数,由此获得非线性FMBS。FMBS的公式是MBS与 (及 )之简单多项式的乘积, 和 分别是网格Reynolds数和网格CFL数。FMBS和MBS使用相同结点,简单性彼此相当,但FMBS精度高稳定范围大,例如FMBS包含了许多绝对稳定和绝对正型、高阶迎风和中心有限差分(FD)格式和有限体积(FV)格式,这些格式对网格Reynolds数的任意值均为不振荡格式。可见对不振荡CFD格式的构建,数值摄动算法提供了不同于调节数值耗散等常见的人为构建方法,而利用流体力学自身关系以及把迎风机制通过上、下游摄动重构引入中心MBS的解析构建方法,FMBS除了直接应用于流体计算外;对于通过调节数值耗散、色散和数值群速度特性重构高分辨率格式的研究,最简单FMBS提供了比最简单MBS更精确、但同样简单的基础和起步格式。FMBS用于计算不可压缩流,可压缩流,液滴萃取传质,微通道两相流等,均获得良好数值结果或与已有Benchmark解一致的数值结果。已有文献称数值摄动算法为新型高精度格式和高的算法和高的格式;本文FMBS比数值摄动格式的称呼可更好反映FMBS的物理内容。文中也讨论了值得进一步研究的一些课题,该法亦可用于其它一些数学物理方程(例如,简化Boltzmann方程、磁流体方程、KdV-Burgers方程等)MBS耦合物理动力学效应的重构。   相似文献   

15.
This paper presents a new model of lattice Boltzmann method for full compressible flows. On the basis of multi‐speed model, an extra potential energy distribution function is introduced to recover the full compressible Navier–Stokes equations with a flexible specific‐heat ratio and Prandtl number. The Chapman–Enskog expansion of the kinetic equations is performed, and the two‐dimension‐seventeen‐velocity density equilibrium distribution functions are obtained. The governing equations are discretized using the third order monotone upwind scheme for scalar conservation laws finite volume scheme. The van Albada limiter is used to avoid spurious oscillations. In order to verify the accuracy of this double‐distribution‐function model, the Riemann problems, Couette flows, and flows around a NACA0012 airfoil are simulated. It is found that the proposed lattice Boltzmann model is suitable for compressible flows, even for strong shock wave problem, which has an extremely large pressure ratio, 100,000. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Asymmetric spatial implicit high‐order schemes are introduced and, based on Fourier analysis, the dispersion and damping are calculated depending on the asymmetry parameter. The derived schemes are then applied to a number of inviscid problems. For incompressible convection problems the proposed asymmetric schemes (applied as upwind schemes) lead to stable and accurate results. To extend the applicability of the proposed schemes to compressible problems acoustic upwinding is used. In a two‐dimensional compressible flow example acoustic and conventional upwinding are combined. Evaluation of all presented results leads to the conclusion that, of the studied schemes, the implicit fifth order upwinding scheme with an asymmetry parameter of about 0.5 leads to the optimal results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The Lagrangian smoothed particle hydrodynamics (SPH) method is used to simulate shock waves in inviscid, supersonic (compressible) flow. It is shown for the first time that the fully Lagrangian SPH particle method, without auxiliary grid, can be used to simulate shock waves in compressible flow. The wall boundary condition is treated with ghost particles combined with a suitable repulsive potential function, whilst corners are treated by a novel ‘angle sweep’ technique. The method gives accurate predictions of the flow field and of the shock angle as compared with the analytical solution. The study shows that SPH is a good potential candidate to solve complex aerodynamic problems, including those involving rarefied flows, such as atmospheric re‐entry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A systematic study has been conducted to assess the performance of the TVD schemes for practical flow computation. The viewpoint adopted here is to treat the TVD schemes as a combination of the standard central difference scheme with numerical dissipation terms. The controlled amount of numerical dissipation modifies the computed fluxes to ensure that the solution is oscillation-free. Four variants of TVD schemes, two with upwind dissipation terms and two with symmetric dissipation terms, have been studied and compared with the conventional Beam-Warming scheme for inviscid and turbulent axisymmetric flow computations. The results obtained show that all four variants can accurately resolve the shock and flow profiles with fewer grid points than the Beam-Warming scheme. The convergence rates of the TVD schemes are also substantially superior to that of the Beam-Warming scheme. The combination of high accuracy, good robustness and improved computational efficiency offered by the TVD schemes makes them attractive for computing high-speed flow with shocks. In terms of the relative performances it is found that the symmetric schemes converge slightly faster but that the upwind schemes are less sensitive to the number of grid points being employed.  相似文献   

19.
For two‐phase flow models, upwind schemes are most often difficult do derive, and expensive to use. Centred schemes, on the other hand, are simple, but more dissipative. The recently proposed multi‐stage (MUSTA ) method is aimed at coming close to the accuracy of upwind schemes while retaining the simplicity of centred schemes. So far, the MUSTA approach has been shown to work well for the Euler equations of inviscid, compressible single‐phase flow. In this work, we explore the MUSTA scheme for a more complex system of equations: the drift‐flux model, which describes one‐dimensional two‐phase flow where the motions of the phases are strongly coupled. As the number of stages is increased, the results of the MUSTA scheme approach those of the Roe method. The good results of the MUSTA scheme are dependent on the use of a large‐enough local grid. Hence, the main benefit of the MUSTA scheme is its simplicity, rather than CPU ‐time savings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we propose a new Lagrangian lattice Boltzmann method (LBM) for simulating the compressible flows. The new scheme simulates fluid flows based on the displacement distribution functions. The compressible flows, such as shock waves and contact discontinuities are modelled by using Lagrangian LBM. In this model, we select the element in the Lagrangian coordinate to satisfy the basic fluid laws. This model is a simpler version than the corresponding Eulerian coordinates, because the convection term of the Euler equations disappears. The numerical simulations conform to classical results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号