首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Based on the availability of prey and a simple predator–prey model, we propose a delayed predator–prey model with predator migration to describe biological control. We first study the existence and stability of equilibria. It turns out that backward bifurcation occurs with the migration rate as bifurcation parameter. The stability of the trivial equilibrium and the boundary equilibrium is delay-independent. However, the stability of the positive equilibrium may be delay-dependent. Moreover, delay can switch the stability of the positive equilibrium. When the positive equilibrium loses stability, Hopf bifurcation can occur. The direction and stability of Hopf bifurcation is derived by applying the center manifold method and the normal form theory. The main theoretical results are illustrated with numerical simulations.  相似文献   

2.
Let \(\mathbb F_{q}\) be a finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{n})\in \mathbb F_{q}^{n}\backslash \{(0,0,\ldots )\}: Tr(x_{1}^{p^{k_{1}}+1}+x_{2}^{p^{k_{2}}+1}+\cdots +x_{n}^{p^{k_{n}}+1})=c\}\), where \(c\in \mathbb F_p\), Tr is the trace function from \(\mathbb F_{q}\) to \(\mathbb F_{p}\) and each \(m/(m,k_{i})\) ( \(1\le i\le n\) ) is odd. we define a p-ary linear code \(C_{D}=\{c(a_{1},a_{2},\ldots ,a_{n}):(a_{1},a_{2},\ldots ,a_{n})\in \mathbb F_{q}^{n}\}\), where \(c(a_{1},a_{2},\ldots ,a_{n})=(Tr(a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}))_{(x_{1},x_{2},\ldots ,x_{n})\in D}\). We present the weight distributions of the classes of linear codes which have at most three weights.  相似文献   

3.
In this paper, we analyze the spatial pattern of a predator–prey system. We get the critical line of Hopf and Turing bifurcation in a spatial domain. In particular, the exact Turing domain is given. Also we perform a series of numerical simulations. The obtained results reveal that this system has rich dynamics, such as spotted, stripe and labyrinth patterns, which shows that it is useful to use the reaction–diffusion model to reveal the spatial dynamics in the real world.  相似文献   

4.
A Lotka–Volterra predator–prey model incorporating a constant number of prey using refuges and mutual interference for predator species is presented. By applying the divergency criterion and theories on exceptional directions and normal sectors, we show that the interior equilibrium is always globally asymptotically stable and two boundary equilibria are both saddle points. Our results indicate that prey refuge has no influence on the coexistence of predator and prey species of the considered model under the effects of mutual interference for predator species, which differently from the conclusion without predator mutual interference, thus improving some known ones. Numerical simulations are performed to illustrate the validity of our results.  相似文献   

5.
This article discusses a predator–prey system with predator saturation and competition functional response. The local stability, existence of a Hopf bifurcation at the coexistence equilibrium and stability of bifurcating periodic solutions are obtained in the absence of diffusion. Further, we discuss the diffusion-driven instability, Hopf bifurcation for corresponding diffusion system with zero flux boundary condition and Turing instability region regarding the parameters are established. Finally, numerical simulations supporting the theoretical analysis are also included.  相似文献   

6.
This paper is concerned with positive steady states for a diffusive predator–prey model with predator interference in a spatially heterogeneous environment. We first establish the necessary and sufficient conditions for the existence of positive steady states. In order to get a better understanding of the structure of positive steady states, we further investigate the asymptotic profiles of positive steady states as some parameter tends to zero or infinity.  相似文献   

7.
A diffusive predator–prey model with predator competition is considered under Dirichlet boundary conditions. Some existence and non-existence results are firstly obtained. Then by investigating the bifurcation of positive solutions, the multiplicity of positive solutions is established for suitably large mm. Furthermore, by meticulously analyzing the asymptotic behaviors of positive solutions when kk goes to ∞, we find that there is at most a positive solution for any c∈RcR when kk is sufficiently large. At last, some numerical simulations are presented to supplement the analytic results in one dimension.  相似文献   

8.
9.
This paper deals with the qualitative properties of an autonomous system of differential equations, modeling ratio-dependent predator–prey interactions.This model differs from traditional ratio dependent models essentially in the predator mortality term, the death rate of the predator is not constant but instead increases when there is overcrowding.We incorporate delay(s) into the system. The most important observation is that as the delay(s) is (are) increased the originally asymptotic stable interior equilibrium loses its stability. Furthermore at a certain critical value a Hopf bifurcation takes place: small amplitude periodic solutions arise.  相似文献   

10.
In this work we examine a Lotka–Volterra model with diffusion describing the dynamics of multiple interacting prey and predator species. We show that the solution exists, and is unique, bounded, nonnegative, and globally defined. We also prove the non-existence of nonconstant steady state solutions if certain conditions are satisfied. For the particular case of two prey (e.g., engineered and native, respectively) and one common predator species, by performing a linear stability analysis about the initial native-dominant steady state, we determine under which conditions the engineered species invasion succeeds.  相似文献   

11.
Cannibalism, as a behavioral trait, is prevalent in many species. To have better understanding of their dynamics, we investigate a structured predator-prey system with predator cannibalism, where the prey population follows the logistic growth in the absence of the predator. We study the effects of the cannibalism attack rate and the corresponding benefit rate of cannibals on the model dynamics. Complex phenomena, including the bistability, the existences of two positive equilibria and stable/unstable periodic solutions, are found. We define quantities with clear biological meanings, and establish conditions determining the local and global dynamics of the model based on these quantities. Our results show that, under certain conditions, the final states of the populations depend on not only the related model parameters but also the initial conditions of the solutions.  相似文献   

12.
In this present paper, we investigate the uniqueness of periodic solutions of a nonautonomous density-dependent and ratio-dependent predator–prey system, where not only the prey density dependence but also the predator density dependence are considered, such that the studied predator–prey system conforms to the realistically biological environment. We start with a sufficient condition for the permanence of the system and then construct a weaker sufficient condition by introducing a specific set, denoted as Γ. Based on this Γ and the Brouwer fixed-point theorem, we obtain the existence condition of positive periodic solutions. Moreover, since the uniqueness of positive periodic solutions can be ensured by global attractiveness, we alternatively introduce a sufficient condition for global attractiveness. Similarly, we also provide a sufficient condition for the uniqueness of non-negative periodic solutions.  相似文献   

13.
In this model we discuss the bioeconomic harvesting of a prey–predator fishery in which both the species are infected by some toxicants released by some other species. Here both the species are harvested where we use the usual catch-per-unit-effort hypothesis. The dynamical behaviour of the exploited system is examined. The possibility of existence of a bionomic equilibrium is considered. The optimal harvesting policy is studied by using Pontryagin’s maximal principle. Some numerical examples and the corresponding solution curves are studied to illustrate the results of the model. Finally, the existence of limit cycle is discussed.  相似文献   

14.
The dynamic behavior of a delayed predator–prey system with Holling II functional response is investigated. The stability analysis has been carried out and existence of Hopf bifurcation has been established. The complex dynamic behavior due to time delay has been explored. The effects of seasonal growth on the complex dynamics have been simulated. The model shows a rich variety of behavior, including period doubling, quasi-periodicity, chaos, transient chaos, and windows of periodicity.  相似文献   

15.
16.
We consider a predator–prey model, where some prey are completely free from predation within a temporal or spacial refuge. The most common type of spacial refuge, that we investigate here, takes the form where a constant proportion of the prey population is protected. The model is a modification of the classical Nicholson–Bailey host-parasitoid model. In this paper, we study the effect of the presence of refuge on the stability and bifurcation of the system. Moreover, we provide a detailed analysis of the Neimark–Sacker bifurcation of the model.  相似文献   

17.
A delayed ratio-dependent predator–prey model with non-monotone functional response is investigated in this paper. Some new and interesting sufficient conditions are obtained for the global existence of multiple positive periodic solutions of the ratio-dependent model. Our method is based on Mawhin’s coincidence degree and some estimation techniques for the a priori bounds of unknown solutions to the equation Lx = λNx. An example is represented to illustrate the feasibility of our main result.  相似文献   

18.
The dynamics of a discrete-time predator–prey system is investigated in the closed first quadrant R+2. It is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation in the interior of R+2 by using a center manifold theorem and bifurcation theory. Numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as orbits of period 7, 14, 21, 63, 70, cascades of period-doubling bifurcation in orbits of period 2, 4, 8, quasi-periodic orbits and chaotic sets. These results show far richer dynamics of the discrete model compared with the continuous model. Specifically, we have stabilized the chaotic orbits at an unstable fixed point using the feedback control method.  相似文献   

19.
20.
In this paper we investigate some free boundary problems for the Lotka–Volterra type prey–predator model in one space dimension. The main objective is to understand the asymptotic behavior of the two species (prey and predator) spreading via a free boundary. We prove a spreading–vanishing dichotomy, namely the two species either successfully spread to the entire space as time t goes to infinity and survive in the new environment, or they fail to establish and die out in the long run. The long time behavior of solution and criteria for spreading and vanishing are also obtained. Finally, when spreading successfully, we provide an estimate to show that the spreading speed (if exists) cannot be faster than the minimal speed of traveling wavefront solutions for the prey–predator model on the whole real line without a free boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号