首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
带裂缝服役是工程结构的常态,由于流体侵入到裂缝内部,裂纹面直接受荷,使得裂缝进一步扩展,甚者影响结构的安全性.广义参数Williams单元(简记W单元)在分析断裂问题中,利用Williams级数建立裂尖奇异区的位移场,通过求解广义刚度方程可直接获得应力强度因子(stress intensity factors,SIFs),具有高精高效性;但W单元需满足奇异区内裂纹面自由的边界条件,故在分析裂纹面加载的问题中受限.该文基于SIFs互等,在等效奇异区范围中,将裂纹面的荷载等效为奇异区外围边界裂纹面上的集中力,避免奇异区内裂纹面受荷,故采用W单元即可简便计算.算例分析表明:等效奇异区尺寸取裂纹长度的1/20,等效荷载系数P建议取2.0,W单元计算精度均满足1%的误差限,证明该文在奇异区裂纹面受荷等效处理方法上具有合理性、通用性,克服了W单元在分析裂纹面加载问题的局限性.  相似文献   

2.
运用广义复变函数方法,通过构造适当的广义保角映射,研究了一维正交准晶中具有四条裂纹的椭圆孔口的平面弹性问题.通过引入应力函数,把平面弹性问题的基本方程简化为一个四阶偏微分方程,从而给出了各个应力分量在像平面的复表示,求得了裂纹尖端的应力强度因子的解析解.当描述缺陷的各参数发生变化时,该文的结果不仅可以还原已有文献中的结论,还可给出多种常见缺陷构型的应力强度因子,为工程力学分析提供了理论依据.  相似文献   

3.
4.
A. Müller  S. Goswami  J. Hohe  W. Becker 《PAMM》2004,4(1):288-289
Although bimaterial wedge or notch configurations are identified as potential weak locations, the assessment of the degree of criticality of cracks in such regions is still a demanding problem. The singular character of the stress field at cracks or at bimaterial notches can be calculated analytically or numerically. The angle of the direction of potential crack initiation may also be determined, but the decisive question is whether a hypothetical crack will be initiated or not. An essential question in the context of crack assessment is to find a criterion for crack nucleation. For that aim, the hypothesis of Leguillon is modified. Herein, the crack is assumed to be critical when and only when both the released energy and the local stress reach critical values along a hypothetical crack of finite length. This concept can be transferred to a bimaterial interface configuration of a thin layer on a substrate. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
利用复变函数方法,通过构造广义保角映射,研究了一维正方准晶垂直于准周期方向具有不对称共线裂纹的圆形孔口问题,给出了各应力分量在象平面的复表示,并得到该裂纹尖端的应力强度因子.在极限情形下,给出一维正方准晶中具有对称共线裂纹的圆形孔口,带单裂纹的圆形孔口和Griffith裂纹在裂纹尖端的应力强度因子.  相似文献   

6.
导出了点群6-维六方准晶反平面弹性问题的控制方程.利用复变方法,给出了点群6-维六方准晶在周期平面内的反平面弹性问题的应力分量以及边界条件的复变表示,通过引入适当的保角变换,研究了点群6-维六方准晶中带有椭圆孔口与半无限裂纹的反平面弹性问题,得到了椭圆孔口问题应力场的解析解,给出了半无限裂纹问题在裂纹尖端处的应力强度因子的解析解.在极限情形下,椭圆孔口转化为Griffith裂纹,并得到该裂纹在裂尖处的应力强度因子的解析解.当点群6-维六方准晶体的对称性增加时,其椭圆孔口与半无限裂纹的反平面弹性问题的解退化为点群6mm-维六方准晶带有椭圆孔口与半无限裂纹的反平面弹性问题的解。  相似文献   

7.
The stress fields in an orthotropic infinite plane containing Volterra type climb and glide edge dislocations are derived. The dislocation solutions are utilized to formulate integral equations for dislocation density functions on the surfaces of smooth cracks. The integral equations are of Cauchy singular type and are solved for several different cases of crack configurations and arrangements. The results are used to evaluate modes I and II stress intensity factors for multiple smooth cracks.  相似文献   

8.
We consider two dissimilar elastic half-planes bonded by a nonhomogeneous elastic layer in which there is one crack at the lower interface between the elastic layer and the lower half-plane and two cracks at the upper interface between the elastic layer and the upper half-plane. The stress intensity factors for these three cracks are solved for when tension is applied perpendicular to the interface cracks. The material properties of the bonding layer vary continuously between those of the lower half-plane and those of the upper half-plane. The differences in the crack surface displacements are expanded in a series of functions that are zero outside the cracks. The unknown coefficients in the series are solved by the Schmidt method so as to satisfy the conditions inside the cracks. The stress intensity factors are calculated numerically for selected crack configurations.  相似文献   

9.
This paper presents the implementation of element free Galerkin method for the stress analysis of structures having cracks at the interface of two dissimilar materials. The material discontinuity at the interface has been modeled using a jump function with a jump parameter that governs its strength. The jump function enriches the approximation by the addition of special shape function that contains discontinuities in the derivative. The trial and test functions of the weak form are constructed using moving least-square interpolants in each material domain. An intrinsic enrichment criterion with enriched basis has been used to model the crack tip stress fields. The mixed mode (complex) stress intensity factors for bi-material interface cracks are numerically evaluated using the modified domain form of interaction integral. The numerical results are obtained for edge and center cracks lying at the bi-material interface, and are found to be in good agreement with the reference solutions for the interfacial crack problems.  相似文献   

10.
11.
一维六方准晶中带双裂纹的椭圆孔口问题的解析解   总被引:2,自引:0,他引:2  
利用复变函数方法,通过构造保角映射,研究了一维六方准晶中带双裂纹的椭圆孔口的反平面剪切问题,给出了Ⅲ型裂纹问题的应力强度因子,在极限情形下,不仅可以还原为已有的结果,而且求得一维六方准晶中带双裂纹的圆形孔口问题、十字裂纹问题在裂纹尖端的应力强度因子.  相似文献   

12.
This paper is concerned with interaction of multiple cracks in a finite plate by using the hybrid displacement discontinuity method (a boundary element method). Detail solutions of the stress intensity factors (SIFs) of the multiple-crack problems in a rectangular plate are given, which can reveal the effect of geometric parameters of the cracked body on the SIFs. The numerical results reported here illustrate that the boundary element method is simple, yet accurate for calculating the SIFs of multiple crack problems in a finite plate.  相似文献   

13.
三维横观各向同性介质界面裂纹的边界积分方程方法   总被引:2,自引:0,他引:2  
基于两相三维横观各向同性介质的基本解和Somigliana恒等式,对三维横观各向同性介质中的任意形状的平片界面裂纹,以裂纹面上的不连续位移为待求参量建立了超奇异积分_微分方程,界面平行于横观各向同性面.根据发散积分的有限部积分理论,应用积分方程方法研究得到裂纹前沿的位移和应力场的表达式、奇性指数以及应力强度因子的不连续位移表达式.在非震荡情形下,超奇异积分_微分方程退化为超奇异积分方程,与均匀介质的超奇异积分方程形式完全相同.  相似文献   

14.
The accurate computation of stress intensity factors (SIFs) plays a decisive role in the determination of crack paths. The calculation of SIFs with the help of singular weight functions leads to pure Neumann problem for anisotropic elasticity in a plane domain with a crack. We present a method to overcome the specific numerical difficulties which arises while calculating these solutions with Finite Element methods. the accuracy and advantage of this method are shown by a numerical example, the calculation of SIFs of a compact tension specimen. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this paper, a numerical approach for analyzing interacting multiple cracks in infinite linear elastic media is presented. By extending Bueckner’s principle suited for a crack to a general system containing multiple interacting cracks, the original problem is divided into a homogeneous problem (the one without cracks) subjected to remote loads and a multiple crack problem in an unloaded body with applied tractions on the crack surfaces. Thus, the results in terms of the stress intensity factors (SIFs) can be obtained by considering the latter problem, which is analyzed easily by means of the displacement discontinuity method with crack-tip elements proposed recently by the author. Test examples are given to illustrate that the numerical approach is very accurate for analyzing interacting multiple cracks in an infinite linear elastic media under remote uniform stresses. In addition, the displacement discontinuity method with crack-tip elements is used to analyze a multiple crack problem in a finite plate. It is found that the boundary element method is also very accurate for investigating interacting multiple cracks in a finite plate. Specially, a generalization of Bueckner’s principle and the displacement discontinuity method with crack-tip elements are used to analyze multiple circular arc crack problems in infinite plate in tension (including: Two Collinear Circular Arc Cracks, Three Collinear Circular Arc Cracks, Two Parallel Circular Arc Cracks, Three Parallel Circular Arc Cracks and Two Circular Arc Cracks) in a plane elasticity plate. Many results are given.  相似文献   

16.
含曲线裂纹圆柱扭转问题的新边界元法   总被引:4,自引:0,他引:4  
研究含曲线裂纹圆柱的Saint-Venant扭转,将问题化归为裂纹上边界积分方程的求解.利用裂纹尖端的奇异元和线性元插值模型,给出了扭转刚度和应力强度因子的边界元计算公式.对圆弧裂纹、曲折裂纹以及直线裂纹的典型问题进行了数值计算,并与用Gauss-Chebyshev求积法计算的直裂纹情形结果进行了比较,证明了方法的有效性和正确性.  相似文献   

17.
Stress analysis is carried out in a graded orthotropic layer containing a screw dislocation undergoing time-harmonic deformation. Energy dissipation in the layer is modeled by viscous damping. The stress fields are Cauchy singular at the location of dislocation. The dislocation solution is utilized to derive integral equations for multiple interacting cracks with any location and orientation in the layer. These equations are solved numerically thereby obtaining the dislocation density function on the crack surfaces and stress intensity factors of cracks. The dependencies of stress intensity factors of cracks on the excitation frequency of applied traction and material properties of the layer are investigated. The analysis allows the determination of natural frequencies of a cracked layer. Furthermore, the interactions of two cracks having various configurations are studied.  相似文献   

18.
通过构造一个新的、精确的和通用的保角映射,利用Muskhelishvili复势法研究了任意自然数次幂的幂函数型曲线裂纹的平面弹性问题,给出了远处受单向拉伸载荷下裂纹尖端Ⅰ型和Ⅱ型应力强度因子的一般解.当幂次取不同的自然数时,可以退化为若干已有的结果.通过数值算例,讨论了幂函数型曲线裂纹的系数、幂次及在x轴上的投影长度对Ⅰ型和Ⅱ型应力强度因子的影响规律.  相似文献   

19.
Closed form expressions are obtained for the stress intensity factors (SIFs) in case of a Brazilian disc with a short central crack, the length of which does not exceed one fifth of the disc radius. The disc is loaded by uniform radial pressure along two finite symmetric arcs of its periphery. The solution is achieved using the method of complex potentials introduced by Kolosov and Muskhelishvili. The advantage of the expressions obtained is that they are valid both for cracks under opening mode as well as for closing cracks. For the first case (opening cracks) the results of the present study are compared with existing approximate solutions and it is concluded that the agreement is excellent as long as the length of the crack remains relatively small compared to the radius of the disc. Regarding the case of a closing mode crack the procedure proposed here (based on a recent alternative approach of the cracked Brazilian disc) leads to a physically acceptable deformed crack shape instead to an unnatural crack with overlapped lips. At the same moment the dependence of the SIFs on the properties of the material is eliminated.  相似文献   

20.
This paper deals with the multiple inclined or circular arc cracks in the upper half of bonded dissimilar materials subjected to shear stress. Using the complex variable function method, and with the help of the continuity conditions of the traction and displacement, the problem is formulated into the hypersingular integral equation (HSIE) with the crack opening displacement function as the unknown and the tractions along the crack as the right term. The obtained HSIE are solved numerically by utilising the appropriate quadrature formulas. Numerical results for multiple inclined or circular arc cracks problems in the upper half of bonded dissimilar materials are presented. It is found that the nondimensional stress intensity factors at the crack tips strongly depends on the elastic constants ratio, crack geometries, the distance between each crack and the distance between the crack and boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号