首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Philipp Junker  Klaus Hackl 《PAMM》2010,10(1):295-296
We present a thermo-mechanically coupled model for poly-crystalline shape memory alloys which accounts both for the localized phase transformations and the resulting heat production. The model is based on the physical principles of energy conservation and entropy maximization. Choosing an appropriate ansatz for the entropy production the evolution equation for the phases can be derived as well the heat conduction equation. The results show good agreement to experimental findings. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
对轴对称正交各向异性功能梯度层合圆板稳态热传导问题进行精确分析.假设材料热传导率沿板厚方向按指数函数形式梯度分布,从正交各向异性功能梯度圆板稳态热传导的基本方程出发,利用分离变量法,获得了在上、下表面作用任意热分布情况下的精确解.通过数值算例的分析,指出材料性质的梯度变化、板厚边界条件等分析了对温度场分布的影响.所获得的精确结果,可以作为评价其它近似方法的标准解答.  相似文献   

3.
本文导出了正交各向异性变厚度圆薄板大挠度问题的基本方程,用修正迭代法求解了正交各向异性变厚度圆薄板在均布载荷下的大挠度问题.作为特例,令ε=0,则由本文结果得到的表达式与J.Nowinski用摄动法得到的正交各向异性等厚度圆薄板大挠度问题的解完全一致.  相似文献   

4.
A considerable fraction of commercial sensors are electrostatically actuated. Many sensor diaphragms are operated in different thermal environments that affect their performance. Because the interplay between the thermal and electrostatic loadings is of interest to designers, in this work we investigate such an interplay. We start with the coupled heat conduction equation and the Saint–Venant plate model. We use nondimensional analysis to show that the dissipation and the elastic coupling vary on a slow scale and hence they can be neglected. Consequently, the heat equation is uncoupled from the plate equation. We consider the case in which the temperature at the boundary is kept at a constant value above the ambient temperature. Substituting the resulting temperature distribution into the plate equation yields an equation with an equivalent compressive load and an electrostatic load due to a DC voltage. Then, a reduced-order model is used to investigate the influence of the dual loading on the plate deflection and their interplay.  相似文献   

5.
This paper presents a novel analytical approach utilizing fractal dimension criteria and the maximum Lyapunov exponent to characterize the conditions which can potentially lead to the chaotic motion of a simply supported thermo-mechanically coupled orthotropic rectangular plate undergoing large deflections. The study commences by deriving the governing partial differential equations of the rectangular plate, and then applies the Galerkin method to simplify these equations to a set of three ordinary differential equations. The associated power spectra, phase plots, Poincaré map, maximum Lyapunov exponents, and fractal and bifurcation diagrams are computed numerically. These features are used to characterize the dynamic behavior of the orthotropic rectangular plate under various excitation conditions. The maximum Lyapunov exponents and the correlation dimensions method indicate that chaotic motion of the orthotropic plate occurs at η1 = 1.0, , and for an external force of . The application of an external in-plane force of magnitude causes the orthotropic plate to perform bifurcation motion. Furthermore, when , aperiodic motion of the plate is observed. Hence, the dynamic motion of a thermo-mechanically coupled orthotropic rectangular plate undergoing large deflections can be controlled and manipulated to achieve periodic motion through an appropriate specification of the system parameters and loads.  相似文献   

6.
弹性地基上正交各向异性变厚度圆薄板的大挠度问题   总被引:1,自引:0,他引:1  
本文推出了均布载荷下弹性基地上的正交各向异性变厚度圆薄板大挠度问题的基本方程。利用修正迭代法获得了该问题的二阶近似解。  相似文献   

7.
The exact series solutions of plates with general boundary conditions have been derived by using various methods such as Fourier series expansion, improved Fourier series method, improved superposition method and finite integral transform method. Although the procedures of the methods are different, they are all Fourier-series based analytical methods. In present study, the foregoing analytical methods are reviewed first. Then, an exact series solution of vibration of orthotropic thin plate with rotationally restrained edges is obtained by applying the method of finite integral transform. Although the method of finite integral transform has been applied for vibration analysis of orthotropic plates, the existing formulation requires of solving a highly non-linear equation and the accuracy of the corresponding numerical results can be questionable. For that reason, an alternative formulation was proposed to resolve the issue. The accuracy and convergence of the proposed method were studied by comparing the results with other exact solutions as well as approximate solutions. Discussions were made for the application of the method of finite integral transform for vibration analysis of orthotropic thin plates.  相似文献   

8.
《Applied Mathematical Modelling》2014,38(11-12):2716-2733
In the design of high-Q micro/nano-resonators, dissipation mechanisms may have damaging effects on the quality factor (Q). One of the major dissipation mechanisms is thermoelastic damping (TED) that needs an accurate consideration for prediction. Aim of this paper is to evaluate the effect of TED on the vibrations of thin beam resonators. In particular, we will focus on cantilever beam resonator used in atomic force microscopy (AFM). AFM resonator is actually a cantilever with a spring attached to its free end. The end spring is considered to capture the effect of surface stiffness between tip and sample surface. The coupled governing equations of motion of thin beam with consideration of TED effects are derived. In general, there are four elastic equations that are coupled with thermal conduction equation. Based on accurate assumptions, these equations are simplified and the various boundary conditions have been used in order to validate the computational procedure. In order to accurately determine TED effects, the coupled thermal conduction equation is solved for the temperature field by considering three-dimensional (3-D) heat conduction along the length, width and thickness of the beam. Weighted residual Galerkin technique is used to obtain frequency shift and the quality factor of the thin beam resonator. The obtained results for quality factor, frequency shift and sensitivity change due to thermo-elastic coupling are presented graphically. Furthermore, the effects of beam aspect ratio, stress-free temperature on the quality factor and the influence of the surface stiffness on the frequencies and modal sensitivity of the AFM cantilever with and without considering thermo-elastic damping effects are discussed.  相似文献   

9.
Heat conduction in multilayered films with the Neumann (or insulated) boundary condition is often encountered in engineering applications, such as laser process in a gold thin‐layer padding on a chromium thin‐layer for micromachining and patterning. Predicting the temperature distribution in a multilayered thin film is essential for precision of laser process. This article presents an accurate finite difference (FD) scheme for solving heat conduction in a double‐layered thin film with the Neumann boundary condition. In particular, the heat conduction equation is discretized using a fourth‐order accurate compact FD method in space coupled with the Crank–Nicolson method in time, where the Neumann boundary condition and the interfacial condition are approximated using a third‐order accurate compact FD method. The overall scheme is proved to be convergent and hence unconditionally stable. Furthermore, the overall scheme can be written into a tridiagonal linear system so that the Thomas algorithm can be easily used. Numerical errors and convergence rates of the solution are tested by an example. Numerical results coincide with the theoretical analysis. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1291–1314, 2014  相似文献   

10.
We present an algorithm for calculating temperature fields in orthotropic bodies of complex shape, which is based on the method of integral equations. To develop the algorithm, the heat conduction boundary-value problem for orthotropic bodies is preliminarily reduced to the corresponding heat conduction problems for isotropic bodies with modified boundary conditions and heat sources. An investigation of the influence of anisotropy on temperature fields in a bounded and an infinite body with a cavity that are heated by heat sources and flows is performed.  相似文献   

11.
This paper analyses the large deflections of an orthotropic rectangular clamped and simply supported thin plate. A hybrid method which combines the finite difference method and the differential transformation method is employed to reduce the partial differential equations describing the large deflections of the orthotropic plate to a set of algebraic equations. The simulation results indicate that significant errors are present in the numerical results obtained for the deflections of the orthotropic plate in the transient state when a step force is applied. The magnitude of the numerical error is found to reduce, and the deflection of the orthotropic plate to converge, as the number of sub-domains considered in the solution procedure increases. The deflection of the simply supported orthotropic plate is great than the clamped orthotropic plate. The current modeling results confirm the applicability of the proposed hybrid method to the solution of the large deflections of a rectangular orthotropic plate.  相似文献   

12.
The thermoelastic problem is solved for an infinite thin orthotropic plate acted on by internal heat sources. Arbitrary heat transfer is assumed between the plate and its surroundings. Results from a numerical study are presented. Donetsk State University. Translated from Teoreticheskaya i Prikladnaya Mekhanika, No. 29, pp. 96–102, 1999.  相似文献   

13.
We study a new model named the Green-Lindsay type therm-elastic model for nonhomogeneous media that consists of a system of dynamic thermoelasticity equations of displacement and dynamic heat conduction equation. We construct the model based on the classical GL-model for homogeneous material. This system is coupled dynamic problem and the displacement field and heat field must be solved at the same time. By using Fadeo-Galerkin method, we proved that the problem we proposed exist unique weak solution under some regular assumption.  相似文献   

14.
1 引言 半导体器件的数值模拟对于半导体技术的发展具有十分重要的意义。[1-6] 研究了半导体方程的差分解法,[7-11]研究了半导体方程的有限元解法。这些研究均未考虑温  相似文献   

15.
Exact bending solutions of fully clamped orthotropic rectangular thin plates subjected to arbitrary loads are derived using the finite integral transform method. In the proposed mathematical method one does not need to predetermine the deformation function because only the basic governing equations of the classical plate theory for orthotropic plates are used in the procedure. Therefore, unlike conventional semi-inverse methods, it serves as a completely rational and accurate model in plate bending analysis. The applicability of the method is extensive, and it can handle plates with different loadings in a uniform procedure, which is simpler than previous methods. Numerical results are presented to demonstrate the validity and accuracy of the approach as compared with those previously reported in the bibliography.  相似文献   

16.
正交各向异性旋转扁壳的非线性振动*   总被引:3,自引:2,他引:1       下载免费PDF全文
本文提出一种时间模态假设,由此导出描述圆柱正交各向异性薄扁球壳和锥壳非线性轴对称自由振动的非线性耦合的代数和微分特征值方程组.我们求出了该方程组的近似解析解,并获得壳体振动的幅频响应关系的渐近展开式.文中还讨论了壳体的几何及材料参量对其振动性态的影响.  相似文献   

17.
对热传导问题的微分方程采用无单元Galerkin法进行数值求解.首先,将微分方程用Galerkin加权残量法转化为等效的积分形式.然后,先将时间变量看作参数,对空间变量进行离散化,得到方程的半离散形式,接着,对时间采用向后Euler—Galerkin格式进行离散,得到方程的全离散形式最后,编制MATLAB程序,上机计算.列举了两个热传导算例,通过计算说明EFG法适用于热传导问题,且其计算速度快,精确度高、前后处理也十分方便,是一种具有潜力的温度场数值计算的新方法.  相似文献   

18.
首次利用广义Melnikov方法研究了一个四边简支矩形薄板的全局分叉和多脉冲混沌动力学.矩形薄板受面外的横向激励和面内的参数激励.利用von Krmn模型和Galerkin方法得到一个二自由度非线性非自治系统用来描述矩形薄板的横向振动.在1∶1内共振条件下,利用多尺度方法得到一个四维的平均方程.通过坐标变换把平均方程化为标准形式,利用广义Melnikov方法研究该系统的多脉冲混沌动力学,并且解释了矩形薄板模态间的相互作用机理.在不求同宿轨道解析表达式的前提下,提供了一个计算Melnikov函数的方法.进一步得到了系统的阻尼、激励幅值和调谐参数在满足一定的限制条件下,矩形薄板系统会存在多脉冲混沌运动.数值模拟验证了该矩形薄板的确存在小振幅的多脉冲混沌响应.  相似文献   

19.
Two classes of exact solutions are derived for the equations of three dimensional linear orthotropic elasticity theory governing flat (plate) bodies in plane strain or axisymmetric deformations. One of these is the analogue of the Lévy solution for plane strain deformations of isotropic plates and is designated as the interior solutions. The other complementary class correspond to the Papkovich-Fadle Eigenfunction solutions for isotropic rectangular strips and is designated as the residual solutions. For sufficiently thin plates, the latter exhibits rapid exponential decay away from the plate edges. A set of first integrals of the elasticity equations is also derived. These first integrals are then transformed into a set of exact necessary conditions for the elastostatic state of the body to be a residual state. The results effectively remove the asymptoticity restriction of rapid exponential decay of the residual state inherent in the corresponding necessary conditions for isotropic plate problems. The requirement of rapid exponential decay effectively limits their applicability to thin plates. The result of the present paper extend the known results to thick plate problems and to orthotropic plate problems. They enable us to formulate the correct edge conditions for two-dimensional orthotropic thick plate theories with stress or mixed edge data.  相似文献   

20.
A theoretical model is developed to investigate the thermoacoustic response of a simply supported plate subjected to combined thermal and acoustic excitations, with two typical graded thermal environments considered. The thermoacoustic governing equation derived by incorporating the thermal moments, membrane forces and acoustic loads into the plate vibration equation is solved using the modal decomposition approach. In combination with the thermal boundary conditions, the Fourier heat conduction equation is solved for the graded temperature distribution in the plate. Fluid-structure coupling between acoustic excitation and the plate is ensured by adopting the velocity continuity condition at the fluid–plate interface. With focus placed on the effect of graded thermal environments on plate vibroacoustic response, numerical investigations reveal the necessity for considering thermal moments in theoretical modeling, particularly when graded thermal environments are of common concern for aircraft structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号