首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the “partial information decomposition” (PID) problem, which aims to decompose the information that a set of source random variables provide about a target random variable into separate redundant, synergistic, union, and unique components. In the first part of this paper, we propose a general framework for constructing a multivariate PID. Our framework is defined in terms of a formal analogy with intersection and union from set theory, along with an ordering relation which specifies when one information source is more informative than another. Our definitions are algebraically and axiomatically motivated, and can be generalized to domains beyond Shannon information theory (such as algorithmic information theory and quantum information theory). In the second part of this paper, we use our general framework to define a PID in terms of the well-known Blackwell order, which has a fundamental operational interpretation. We demonstrate our approach on numerous examples and show that it overcomes many drawbacks associated with previous proposals.  相似文献   

2.
Partial information decomposition allows the joint mutual information between an output and a set of inputs to be divided into components that are synergistic or shared or unique to each input. We consider five different decompositions and compare their results using data from layer 5b pyramidal cells in two different studies. The first study was on the amplification of somatic action potential output by apical dendritic input and its regulation by dendritic inhibition. We find that two of the decompositions produce much larger estimates of synergy and shared information than the others, as well as large levels of unique misinformation. When within-neuron differences in the components are examined, the five methods produce more similar results for all but the shared information component, for which two methods produce a different statistical conclusion from the others. There are some differences in the expression of unique information asymmetry among the methods. It is significantly larger, on average, under dendritic inhibition. Three of the methods support a previous conclusion that apical amplification is reduced by dendritic inhibition. The second study used a detailed compartmental model to produce action potentials for many combinations of the numbers of basal and apical synaptic inputs. Decompositions of the entire data set produce similar differences to those in the first study. Two analyses of decompositions are conducted on subsets of the data. In the first, the decompositions reveal a bifurcation in unique information asymmetry. For three of the methods, this suggests that apical drive switches to basal drive as the strength of the basal input increases, while the other two show changing mixtures of information and misinformation. Decompositions produced using the second set of subsets show that all five decompositions provide support for properties of cooperative context-sensitivity—to varying extents.  相似文献   

3.
Information theory provides robust measures of multivariable interdependence, but classically does little to characterize the multivariable relationships it detects. The Partial Information Decomposition (PID) characterizes the mutual information between variables by decomposing it into unique, redundant, and synergistic components. This has been usefully applied, particularly in neuroscience, but there is currently no generally accepted method for its computation. Independently, the Information Delta framework characterizes non-pairwise dependencies in genetic datasets. This framework has developed an intuitive geometric interpretation for how discrete functions encode information, but lacks some important generalizations. This paper shows that the PID and Delta frameworks are largely equivalent. We equate their key expressions, allowing for results in one framework to apply towards open questions in the other. For example, we find that the approach of Bertschinger et al. is useful for the open Information Delta question of how to deal with linkage disequilibrium. We also show how PID solutions can be mapped onto the space of delta measures. Using Bertschinger et al. as an example solution, we identify a specific plane in delta-space on which this approach’s optimization is constrained, and compute it for all possible three-variable discrete functions of a three-letter alphabet. This yields a clear geometric picture of how a given solution decomposes information.  相似文献   

4.
In recent years ultrasonic attenuation spectroscopy has gained much attention as a method for the characterisation of concentrated dispersions. Several publications have shown, that this method allows the accurate determination of particle size. In particular for submicron dispersions there is, however, some uncertainty to which degree the details of a size distribution can be resolved by acoustic attenuation measurements. Ideally the inversion of an attenuation spectrum into a size distribution would yield as much distribution parameters as sound frequencies. In practice, however, the measurement errors affect the inversion very strongly and may result in multiple solutions for the size distribution. The maximum number of distribution parameters, for which a unique solution exists, can be therefore regarded as the information content. For a given ultrasonic spectrometer and material system it is possible to quantify the information content. Such an information analysis has been conducted with selected material systems in the submicron range. The investigation shows that the information content of acoustic attenuation spectra with regard to particle size analysis in the submicron range is relatively low. On the other hand, the results imply that the number of frequencies can be reduced significantly without loss of information content or stability of inversion algorithms.  相似文献   

5.
One of the important steps in the annotation of genomes is the identification of regions in the genome which code for proteins. One of the tools used by most annotation approaches is the use of signals extracted from genomic regions that can be used to identify whether the region is a protein coding region. Motivated by the fact that these regions are information bearing structures we propose signals based on measures motivated by the average mutual information for use in this task. We show that these signals can be used to identify coding and noncoding sequences with high accuracy. We also show that these signals are robust across species, phyla, and kingdom and can, therefore, be used in species agnostic genome annotation algorithms for identifying protein coding regions. These in turn could be used for gene identification.  相似文献   

6.
Recognition of a brain region’s interaction is an important field in neuroscience. Most studies use the Pearson correlation to find the interaction between the regions. According to the experimental evidence, there is a nonlinear dependence between the activities of different brain regions that is ignored by Pearson correlation as a linear measure. Typically, the average activity of each region is used as input because it is a univariate measure. This dimensional reduction, i.e., averaging, leads to a loss of spatial information across voxels within the region. In this study, we propose using an information-theoretic measure, multivariate mutual information (mvMI), as a nonlinear dependence to find the interaction between regions. This measure, which has been recently proposed, simplifies the mutual information calculation complexity using the Gaussian copula. Using simulated data, we show that the using this measure overcomes the mentioned limitations. Additionally using the real resting-state fMRI data, we compare the level of significance and randomness of graphs constructed using different methods. Our results indicate that the proposed method estimates the functional connectivity more significantly and leads to a smaller number of random connections than the common measure, Pearson correlation. Moreover, we find that the similarity of the estimated functional networks of the individuals is higher when the proposed method is used.  相似文献   

7.
The theory of intersectionality proposes that an individual’s experience of society has aspects that are irreducible to the sum of one’s various identities considered individually, but are “greater than the sum of their parts”. In recent years, this framework has become a frequent topic of discussion both in social sciences and among popular movements for social justice. In this work, we show that the effects of intersectional identities can be statistically observed in empirical data using information theory, particularly the partial information decomposition framework. We show that, when considering the predictive relationship between various identity categories such as race and sex, on outcomes such as income, health and wellness, robust statistical synergies appear. These synergies show that there are joint-effects of identities on outcomes that are irreducible to any identity considered individually and only appear when specific categories are considered together (for example, there is a large, synergistic effect of race and sex considered jointly on income irreducible to either race or sex). Furthermore, these synergies are robust over time, remaining largely constant year-to-year. We then show using synthetic data that the most widely used method of assessing intersectionalities in data (linear regression with multiplicative interaction coefficients) fails to disambiguate between truly synergistic, greater-than-the-sum-of-their-parts interactions, and redundant interactions. We explore the significance of these two distinct types of interactions in the context of making inferences about intersectional relationships in data and the importance of being able to reliably differentiate the two. Finally, we conclude that information theory, as a model-free framework sensitive to nonlinearities and synergies in data, is a natural method by which to explore the space of higher-order social dynamics.  相似文献   

8.
Deep learning has proven to be an important element of modern data processing technology, which has found its application in many areas such as multimodal sensor data processing and understanding, data generation and anomaly detection. While the use of deep learning is booming in many real-world tasks, the internal processes of how it draws results is still uncertain. Understanding the data processing pathways within a deep neural network is important for transparency and better resource utilisation. In this paper, a method utilising information theoretic measures is used to reveal the typical learning patterns of convolutional neural networks, which are commonly used for image processing tasks. For this purpose, training samples, true labels and estimated labels are considered to be random variables. The mutual information and conditional entropy between these variables are then studied using information theoretical measures. This paper shows that more convolutional layers in the network improve its learning and unnecessarily higher numbers of convolutional layers do not improve the learning any further. The number of convolutional layers that need to be added to a neural network to gain the desired learning level can be determined with the help of theoretic information quantities including entropy, inequality and mutual information among the inputs to the network. The kernel size of convolutional layers only affects the learning speed of the network. This study also shows that where the dropout layer is applied to has no significant effects on the learning of networks with a lower dropout rate, and it is better placed immediately after the last convolutional layer with higher dropout rates.  相似文献   

9.
The Khinchin–Shannon generalized inequalities for entropy measures in Information Theory, are a paradigm which can be used to test the Synergy of the distributions of probabilities of occurrence in physical systems. The rich algebraic structure associated with the introduction of escort probabilities seems to be essential for deriving these inequalities for the two-parameter Sharma–Mittal set of entropy measures. We also emphasize the derivation of these inequalities for the special cases of one-parameter Havrda–Charvat’s, Rényi’s and Landsberg–Vedral’s entropy measures.  相似文献   

10.
11.
Task-nuisance decomposition describes why the information bottleneck loss I(z;x)βI(z;y) is a suitable objective for supervised learning. The true category y is predicted for input x using latent variables z. When n is a nuisance independent from y, I(z;n) can be decreased by reducing I(z;x) since the latter upper bounds the former. We extend this framework by demonstrating that conditional mutual information I(z;x|y) provides an alternative upper bound for I(z;n). This bound is applicable even if z is not a sufficient representation of x, that is, I(z;y)I(x;y). We used mutual information neural estimation (MINE) to estimate I(z;x|y). Experiments demonstrated that I(z;x|y) is smaller than I(z;x) for layers closer to the input, matching the claim that the former is a tighter bound than the latter. Because of this difference, the information plane differs when I(z;x|y) is used instead of I(z;x).  相似文献   

12.
基于多元定标法的煤粉碳元素LIBS定量分析   总被引:1,自引:0,他引:1  
本文选用碳含量差别较大的14个煤样,进行激光诱导击穿光谱实验。引入多元校正的分析方法,实现煤中碳元素的LIBS定量分析。根据煤质的结构特点,得到影响碳元素激发的主要影响因素分别为与碳骨架相连的H、O、N,以及主要的矿物质元素Si、Al、Ca、Fe。选择这些元素常见的特征谱线强度值,作为多元回归分析的输入量,然后根据回归方程变量的筛选原则,确定了用于回归关联式建立的变量,进而得到回归关联式,并通过方差分析和回归统计验证了方程的可行性。结果表明,采用多元校正的分析方法,得到多元回归分析模型预测值与实验室元素分析仪得到的参考值之间的相对误差在5%之内,说明采用多变量校正的分析方法对碳元素进行定量分析,能得到较高的分析精度。  相似文献   

13.
Digital communication receivers extract information about the transmitted data from the received signal in subsequent processing steps, such as synchronization, demodulation and channel decoding. Technically, the receiver-side signal processing for conducting these tasks is complex and hence causes bottleneck situations in terms of power, delay and chip area. Typically, many bits per sample are required to represent and process the received signal in the digital receiver hardware accurately. In addition, demanding arithmetical operations are required in the signal processing algorithms. A popular recent trend is designing entire receiver chains or some of their crucial building blocks from an information theoretical perspective. Signal processing blocks with very simple mathematical operations can be designed to directly maximize the relevant information that flows through them. At the same time, a strong quantization reduces the number of bits processed in the receiver to further lower the complexity. The described system design approach follows the principle of the information bottleneck method. Different authors proposed various ideas to design and implement mutual information-maximizing signal processing units. The first important aim of this article is to explain the fundamental similarities between the information bottleneck method and the functionalities of communication receivers. Based on that, we present and investigate new results on an entire receiver chain that is designed following the information bottleneck design principle. Afterwards, we give an overview of different techniques following the information bottleneck design paradigm from the literature, mainly dealing with channel decoding applications. We analyze the similarities of the different approaches for information bottleneck signal processing. This comparison leads to a general view on information bottleneck signal processing which goes back to the learning of parameters of trainable functions that maximize the relevant mutual information under compression.  相似文献   

14.
Fitts studied the problem of information capacity and transfer in the speed–accuracy motor paradigm using a theoretical approach developed from Shannon and Weaver’s information theory. The information processing (bit/s) estimated in Fitts’ study is calculated from the movement time required to achieve the required task index of difficulty but is essentially different from Shannon’s information entropy. Thus, we estimated the information entropy of multiple human movement trajectories and the mutual information among trajectories for the continuous aiming task in Fitts’ paradigm. Further, we estimated the information processing moment by moment. Two methods were considered: (1) encoded values encompassing the coordinates of the three dimensions and (2) coordinate values associated with each direction in the three dimensions. Information entropy indicates the magnitude of variation at each time point, and the structure of this variation varies with the index of difficulty. The ratio of entropy to mutual information was examined, and it was found that information was processed from the first half of the trajectory in difficult tasks. In addition, since these values calculated from the encoded method were higher than those from the conventional method, this method may be able to estimate these values successfully.  相似文献   

15.
Deep learning methods have had outstanding performances in various fields. A fundamental query is why they are so effective. Information theory provides a potential answer by interpreting the learning process as the information transmission and compression of data. The information flows can be visualized on the information plane of the mutual information among the input, hidden, and output layers. In this study, we examine how the information flows are shaped by the network parameters, such as depth, sparsity, weight constraints, and hidden representations. Here, we adopt autoencoders as models of deep learning, because (i) they have clear guidelines for their information flows, and (ii) they have various species, such as vanilla, sparse, tied, variational, and label autoencoders. We measured their information flows using Rényi’s matrix-based α-order entropy functional. As learning progresses, they show a typical fitting phase where the amounts of input-to-hidden and hidden-to-output mutual information both increase. In the last stage of learning, however, some autoencoders show a simplifying phase, previously called the “compression phase”, where input-to-hidden mutual information diminishes. In particular, the sparsity regularization of hidden activities amplifies the simplifying phase. However, tied, variational, and label autoencoders do not have a simplifying phase. Nevertheless, all autoencoders have similar reconstruction errors for training and test data. Thus, the simplifying phase does not seem to be necessary for the generalization of learning.  相似文献   

16.
张梅  崔超  马千里  干宗良  王俊 《物理学报》2013,62(6):68704-068704
提出了一种新的时间序列耦合信息分析方法–-基于部分互信息符号化部分互信息熵. 研究表明, 多参量的生物电信号各参量间具有耦合关系, 使用符号化的部分互信息能够很好地对生物电信号时间序列进行分析, 从而获得其耦合程度.应用该算法对生物电信号计算并进行假设检验, 结果表明清醒期的生物电信号耦合程度显著高于睡眠期, 证明符号化部分互信息可以用来分析时间序列间的耦合信息, 而且生物电信号的耦合程度可以作为度量一个物理过程是否处于活跃状态的参数, 未来可以应用于临床医学以及生物电传感器等领域. 关键词: 符号化 部分互信息熵 生物电信号 耦合  相似文献   

17.
We consider the problem of finding the closest multivariate Gaussian distribution on a constraint surface of all Gaussian distributions to a given distribution. Previous research regarding geodesics on the multivariate Gaussian manifold has focused on finding closed-form, shortest-path distances between two fixed distributions on the manifold, often restricting the parameters to obtain the desired solution. We demonstrate how to employ the techniques of the calculus of variations with a variable endpoint to search for the closest distribution from a family of distributions generated via a constraint set on the parameter manifold. Furthermore, we examine the intermediate distributions along the learned geodesics which provide insight into uncertainty evolution along the paths. Empirical results elucidate our formulations, with visual illustrations concretely exhibiting dynamics of 1D and 2D Gaussian distributions.  相似文献   

18.
Quantum–mechanical systems may be understood in terms of information. When they interact, they modify the information they carry or represent in two, and only two, ways: by selecting a part of the initial amount of (potential) information and by sharing information with other systems. As a consequence, quantum systems are informationally shielded. These features are shown to be general features of nature. In particular, it is shown that matter arises from quantum–mechanical processes through the constitution of larger ensembles that share some information while living organisms make use of a special form of information selection.  相似文献   

19.
If regularity in data takes the form of higher-order functions among groups of variables, models which are biased towards lower-order functions may easily mistake the data for noise. To distinguish whether this is the case, one must be able to quantify the contribution of different orders of dependence to the total information. Recent work in information theory attempts to do this through measures of multivariate mutual information (MMI) and information decomposition (ID). Despite substantial theoretical progress, practical issues related to tractability and learnability of higher-order functions are still largely unaddressed. In this work, we introduce a new approach to information decomposition—termed Neural Information Decomposition (NID)—which is both theoretically grounded, and can be efficiently estimated in practice using neural networks. We show on synthetic data that NID can learn to distinguish higher-order functions from noise, while many unsupervised probability models cannot. Additionally, we demonstrate the usefulness of this framework as a tool for exploring biological and artificial neural networks.  相似文献   

20.
The varied cognitive abilities and rich adaptive behaviors enabled by the animal nervous system are often described in terms of information processing. This framing raises the issue of how biological neural circuits actually process information, and some of the most fundamental outstanding questions in neuroscience center on understanding the mechanisms of neural information processing. Classical information theory has long been understood to be a natural framework within which information processing can be understood, and recent advances in the field of multivariate information theory offer new insights into the structure of computation in complex systems. In this review, we provide an introduction to the conceptual and practical issues associated with using multivariate information theory to analyze information processing in neural circuits, as well as discussing recent empirical work in this vein. Specifically, we provide an accessible introduction to the partial information decomposition (PID) framework. PID reveals redundant, unique, and synergistic modes by which neurons integrate information from multiple sources. We focus particularly on the synergistic mode, which quantifies the “higher-order” information carried in the patterns of multiple inputs and is not reducible to input from any single source. Recent work in a variety of model systems has revealed that synergistic dynamics are ubiquitous in neural circuitry and show reliable structure–function relationships, emerging disproportionately in neuronal rich clubs, downstream of recurrent connectivity, and in the convergence of correlated activity. We draw on the existing literature on higher-order information dynamics in neuronal networks to illustrate the insights that have been gained by taking an information decomposition perspective on neural activity. Finally, we briefly discuss future promising directions for information decomposition approaches to neuroscience, such as work on behaving animals, multi-target generalizations of PID, and time-resolved local analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号