首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate several existing interface procedures for finite difference methods applied to advection–diffusion problems. The accuracy, stiffness and reflecting properties of various interface procedures are investigated.The analysis and numerical experiments show that there are only minor differences between various methods once a proper parameter choice has been made.  相似文献   

2.
We propose a finite volume method on general meshes for the discretization of a degenerate parabolic convection–reaction–diffusion equation. Equations of this type arise in many contexts, such as for example the modeling of contaminant transport in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized using a recently developed hybrid mimetic mixed framework. We construct a family of discretizations for the convection term, which uses the hybrid interface unknowns. We consider a wide range of unstructured possibly nonmatching polyhedral meshes in arbitrary space dimension. The scheme is fully implicit in time, it is locally conservative and robust with respect to the Péclet number. We obtain a convergence result based upon a priori estimates and the Fréchet–Kolmogorov compactness theorem. We implement the scheme both in two and three space dimensions and compare the numerical results obtained with the upwind and the centered discretizations of the convection term numerically.  相似文献   

3.
A one dimensional fractional diffusion model with the Riemann–Liouville fractional derivative is studied. First, a second order discretization for this derivative is presented and then an unconditionally stable weighted average finite difference method is derived. The stability of this scheme is established by von Neumann analysis. Some numerical results are shown, which demonstrate the efficiency and convergence of the method. Additionally, some physical properties of this fractional diffusion system are simulated, which further confirm the effectiveness of our method.  相似文献   

4.
This paper mainly concerns with the order reduction to the coefficient vectors of the classical space–time continuous finite element (STCFE) solutions for a two-dimensional Sobolev equation. The classical STCFE model is first constructed for the governing equation, and the theoretical results of the existence, stability, and convergence are provided for the STCFE solutions. We then employ a proper orthogonal decomposition to develop a reduced-order extrapolating STCFE (ROESTCFE) vector model with the lower dimension, and demonstrate the existence, stability, and convergence for the ROESTCFE solutions by the matrix means, resulting in the very concise and flexible theoretical analysis. Lastly, we examine the effectiveness of the developed ROESTCFE model by several numerical tests. It is shown that the ROESTCFE method is computationally very cheap in actual applications.  相似文献   

5.
The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction–diffusion–advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.  相似文献   

6.
7.
8.
《Applied Mathematical Modelling》2014,38(15-16):3755-3762
Fractional differential equations have been increasingly used as a powerful tool to model the non-locality and spatial heterogeneity inherent in many real-world problems. However, a constant challenge faced by researchers in this area is the high computational expense of obtaining numerical solutions of these fractional models, owing to the non-local nature of fractional derivatives. In this paper, we introduce a finite volume scheme with preconditioned Lanczos method as an attractive and high-efficiency approach for solving two-dimensional space-fractional reaction–diffusion equations. The computational heart of this approach is the efficient computation of a matrix-function-vector product f(A)b, where A is the matrix representation of the Laplacian obtained from the finite volume method and is non-symmetric. A key aspect of our proposed approach is that the popular Lanczos method for symmetric matrices is applied to this non-symmetric problem, after a suitable transformation. Furthermore, the convergence of the Lanczos method is greatly improved by incorporating a preconditioner. Our approach is show-cased by solving the fractional Fisher equation including a validation of the solution and an analysis of the behaviour of the model.  相似文献   

9.
A generalized Black–Scholes equation is considered on the semi-axis. It is transformed on the interval (0, 1) in order to make the computational domain finite. The new parabolic operator degenerates at the both ends of the interval and we are forced to use the Gärding inequality rather than the classical coercivity. A fitted finite volume element space approximation is constructed. It is proved that the time $\theta $ -weighted full discretization is uniquely solvable and positivity-preserving. Numerical experiments, performed to illustrate the usefulness of the method, are presented.  相似文献   

10.
11.
This paper concerns a numerical solution for the diffusion equation on the unit sphere. The given method is based on the spherical basis function approximation and the Petrov–Galerkin test discretization. The method is meshless because spherical triangulation is not required neither for approximation nor for numerical integration. This feature is achieved through the spherical basis function approximation and the use of local weak forms instead of a global variational formulation. The local Petrov–Galerkin formulation allows to compute the integrals on small independent spherical caps without any dependence on a connected background mesh. Experimental results show the accuracy and the efficiency of the new method.  相似文献   

12.
We propose a new finite volume method for scalar conservation laws with stochastic time–space dependent flux functions. The stochastic effects appear in the flux function and can be interpreted as a random manner to localize the discontinuity in the time–space dependent flux function. The location of the interface between the fluxes can be obtained by solving a system of stochastic differential equations for the velocity fluctuation and displacement variable. In this paper we develop a modified Rusanov method for the reconstruction of numerical fluxes in the finite volume discretization. To solve the system of stochastic differential equations for the interface we apply a second-order Runge–Kutta scheme. Numerical results are presented for stochastic problems in traffic flow and two-phase flow applications. It is found that the proposed finite volume method offers a robust and accurate approach for solving scalar conservation laws with stochastic time–space dependent flux functions.  相似文献   

13.
A discontinuous Galerkin finite element heterogeneous multiscale method is proposed for advection–diffusion problems with highly oscillatory coefficients. The method is based on a coupling of a discontinuous Galerkin discretization for an effective advection–diffusion problem on a macroscopic mesh, whose a priori unknown data are recovered from micro finite element calculations on sampling domains within each macro element. The computational work involved is independent of the high oscillations in the problem at the smallest scale. The stability of our method (depending on both macro and micro mesh sizes) is established for both diffusion dominated and advection dominated regimes without any assumptions about the type of heterogeneities in the data. Fully discrete a priori error bounds are derived for locally periodic data. Numerical experiments confirm the theoretical error estimates.  相似文献   

14.
In this article we study the stability of explicit finite difference discretization of advection–diffusion equations (ADE) with arbitrary order of accuracy in the context of method of lines. The analysis first focuses on the stability of the system of ordinary differential equations that is obtained by discretizing the ADE in space and then extends to fully discretized methods in combination with explicit Runge–Kutta methods. In particular, we prove that all stable semi-discretization of the ADE leads to a conditionally stable fully discretized method as long as the time-integrator is at least first-order accurate, whereas high-order spatial discretization of the advection equation cannot yield a stable method if the temporal order is too low. In the second half of the article, the analysis and the stability results are extended to a partially dissipative wave system, which serves as a model for common practice in many fluid mechanics applications that incorporate a viscous stress in the momentum equation but no heat dissipation in the energy equation. Finally, the major theoretical predictions are verified by numerical examples.  相似文献   

15.
We propose a finite volume scheme for convection–diffusion equations with nonlinear diffusion. Such equations arise in numerous physical contexts. We will particularly focus on the drift-diffusion system for semiconductors and the porous media equation. In these two cases, it is shown that the transient solution converges to a steady-state solution as t tends to infinity. The introduced scheme is an extension of the Scharfetter–Gummel scheme for nonlinear diffusion. It remains valid in the degenerate case and preserves steady-states. We prove the convergence of the scheme in the nondegenerate case. Finally, we present some numerical simulations applied to the two physical models introduced and we underline the efficiency of the scheme to preserve long-time behavior of the solutions.  相似文献   

16.
17.
We consider discretizations for reaction–diffusion systems with nonlinear diffusion in two space dimensions. The applied model allows to handle heterogeneous materials and uses the chemical potentials of the involved species as primary variables. We propose an implicit Voronoi finite volume discretization on arbitrary, even anisotropic, Voronoi meshes that allows to prove uniform, mesh-independent global upper and lower bounds for the chemical potentials. These bounds provide one of the main steps for a convergence analysis for the fully discretized nonlinear evolution problem. The fundamental ideas are energy estimates, a discrete Moser iteration and the use of discrete Gagliardo–Nirenberg inequalities.  相似文献   

18.
In this article, an \(H^1\)-Galerkin mixed finite element (MFE) method for solving time fractional reaction–diffusion equation is presented. The optimal time convergence order \(O(\varDelta t^{2-\alpha })\) and the optimal spatial rate of convergence in \(H^1\) and \(L^2\)-norms for variable \(u\) and its gradient \(\sigma \) are derived. Moreover, some numerical results are shown to support our theoretical analysis.  相似文献   

19.
In this paper, we focus on maximum principles of a time–space fractional diffusion equation. Maximum principles for classical solution and weak solution are all obtained by using properties of the time fractional derivative operator and the fractional Laplace operator. We deduce maximum principles for a full fractional diffusion equation, other than time-fractional and spatial-integer order diffusion equations.  相似文献   

20.
A stabilized finite volume method for solving the transient Navier–Stokes equations is developed and studied in this paper. This method maintains conservation property associated with the Navier–Stokes equations. An error analysis based on the variational formulation of the corresponding finite volume method is first introduced to obtain optimal error estimates for velocity and pressure. This error analysis shows that the present stabilized finite volume method provides an approximate solution with the same convergence rate as that provided by the stabilized linear finite element method for the Navier–Stokes equations under the same regularity assumption on the exact solution and a slightly additional regularity on the source term. The stability and convergence results of the proposed method are also demonstrated by the numerical experiments presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号