首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Mathematical Modelling》2014,38(11-12):3038-3053
We propose a game-theoretic approach to simultaneously restore and segment noisy images. We define two players: one is restoration, with the image intensity as strategy, and the other is segmentation with contours as strategy. Cost functions are the classical relevant ones for restoration and segmentation, respectively. The two players play a static game with complete information, and we consider as solution to the game the so-called Nash equilibrium. For the computation of this equilibrium we present an iterative method with relaxation. The results of numerical experiments performed on some real images show the relevance and efficiency of the proposed algorithm.  相似文献   

2.
Variational models for image segmentation are usually solved by the level set method, which is not only slow to compute but also dependent on initialization strongly. Recently, fuzzy region competition models or globally convex segmentation models have been introduced. They are insensitive to initialization, but contain TV-regularizers, making them difficult to compute. Goldstein, Bresson and Osher have applied the split Bregman iteration to globally convex segmentation models which avoided the regularization of TV norm and speeded up the computation. However, the split Bregman method needs to solve a partial differential equation (PDE) in each iteration. In this paper, we present a simple algorithm without solving the PDEs proposed originally by Jia et al. (2009) with application to image segmentation problems. The algorithm also avoids the regularization of TV norm and has a simpler form, which is in favor of implementing. Numerical experiments show that our algorithm works faster and more efficiently than other fast schemes, such as duality based methods and the split Bregman scheme.  相似文献   

3.
Image segmentation methods usually suffer from intensity inhomogeneity problem caused by many factors such as spatial variations in illumination (or bias fields of imaging devices). In order to address this problem, this paper proposes a Retinex-based variational model for image segmentation and bias correction. According to Retinex theory, the input inhomogeneous image can be decoupled into illumination bias and reflectance parts. The main contribution of this paper is to consider piecewise constant of the reflectance, and thereby introduce the total variation term in the proposed model for correcting and segmenting the input image. This is different from the existing model in which the spatial smoothness of the illumination bias is employed only. The existence of the minimizers to the variational model is established. Furthermore, we develop an efficient algorithm to solve the model numerically by using the alternating minimization method. Our experimental results are reported to demonstrate the effectiveness of the proposed method, and its performance is competitive with that of the other testing methods.  相似文献   

4.
In this paper we present a new algorithm for the single-input pole assignment problem using state feedback. This algorithm is based on the Schur decomposition of the closed-loop system matrix, and the numerically stable unitary transformations are used whenever possible, and hence it is numerically reliable.The good numerical behavior of this algorithm is also illustrated by numerical examples.  相似文献   

5.
A numerical approach to the problem: minF λ(E), whereF λ(E)=P(E,R n )+λ|Ω/E|, is considered. The functionalF λ is approximated, using techniques of Γ-convergence, with a sequence of functionals that are successively discretized by finite differences. A relation between the index of the approximating sequence and the meshsize of the domain is found.
Riassunto Viene presentato un approccio numerico del problema: minF λ(E), doveF λ(E)=P(E,R n )+λ|Ω/E|. Il funzionaleF λ viene approssimato, usando tecniche di Γ-convergenza, con una successione di funzionali, successivamente discretizzati con differenze finite. Viene trovata una relazione tra l'indice della successione approssimante e il passo del reticolo del dominio.
  相似文献   

6.
A new trust region algorithm for image restoration   总被引:1,自引:0,他引:1  
The image restoration problems play an important role in remote sensing and astronomical image analysis. One common method for the recovery of a true image from corrupted or blurred image is the least squares error (LSE) method. But the LSE method is unstable in practical applications. A popular way to overcome instability is the Tikhonov regularization. However, difficulties will encounter when adjusting the so-called regularization parameter a. Moreover, how to truncate the iteration at appropriate steps is also challenging. In this paper we use the trust region method to deal with the image restoration problem, meanwhile, the trust region subproblem is solved by the truncated Lanczos method and the preconditioned truncated Lanczos method. We also develop a fast algorithm for evaluating the Kronecker matrix-vector product when the matrix is banded. The trust region method is very stable and robust, and it has the nice property of updating the trust region automatically. This releases us from tedious fi  相似文献   

7.
We use a functional integral technique generalizing the Keldysh diagram technique to describe glass transition kinetics. We show that the Keldysh functional approach takes the dynamical determinant arising in the glass dynamics into account exactly and generalizes the traditional approach based on using the supersymmetric dynamic generating functional method. In contrast to the supersymmetric method, this approach allows avoiding additional Grassmannian fields and tracking the violation of the fluctuation-dissipation theorem explicitly. We use this method to describe the dynamics of an Edwards-Anderson soft spin-glass-type model near the paramagnet-glass transition. We show that a Vogel-Fulcher-type dynamics arises in the fluctuation region only if the fluctuation-dissipation theorem is violated in the process of dynamical renormalization of the Keldysh action in the replica space.  相似文献   

8.
给出图像分割的一种新算法——BB算法.该方法的优点在于利用迭代过程中当前点和前一点的信息确定搜索步长,从而更有效地搜索最优解.为此,首先通过变分水平集方法将CV模型转化为最优化问题;其次,将BB算法引入该优化问题进行求解;然后,对BB算法进行收敛性分析,为该算法应用在CV模型中提供了理论依据;最后将该方法与已有的最速下降法、共轭梯度法的分割结果进行比较.结果表明,跟其他两种方法相比,BB算法在保证较好分割效果的前提下,提高了算法的速度和性能.  相似文献   

9.
We propose a new algorithm for the total variation based on image denoising problem. The split Bregman method is used to convert an unconstrained minimization denoising problem to a linear system in the outer iteration. An algebraic multi-grid method is applied to solve the linear system in the inner iteration. Furthermore, Krylov subspace acceleration is adopted to improve convergence in the outer iteration. Numerical experiments demonstrate that this algorithm is efficient even for images with large signal-to-noise ratio.  相似文献   

10.
从最优化理论的角度来看,目前求解图像分割的测地线活动轮廓(geodesic active contour,GAC)模型大多采用固定步长的最速下降算法.而众所周知,该算法收敛速度较慢,这在能量泛函的梯度较小时尤为明显.对求解GAC模型的快速算法进行了研究.首先,回顾了GAC模型的演化方程;随后,将共轭梯度(conjugate gradient,CG)算法引入到GAC模型的求解中,形成一种新的求解图像分割问题的数值方法,即GAC模型的CG算法;最后,通过试验对比传统的数值方法,表明CG算法具有良好的收敛性.  相似文献   

11.
The total variation semi-norm based model by Rudin-Osher-Fatemi (in Physica D 60, 259–268, 1992) has been widely used for image denoising due to its ability to preserve sharp edges. One drawback of this model is the so-called staircasing effect that is seen in restoration of smooth images. Recently several models have been proposed to overcome the problem. The mean curvature-based model by Zhu and Chan (in SIAM J. Imaging Sci. 5(1), 1–32, 2012) is one such model which is known to be effective for restoring both smooth and nonsmooth images. It is, however, extremely challenging to solve efficiently, and the existing methods are slow or become efficient only with strong assumptions on the formulation; the latter includes Brito-Chen (SIAM J. Imaging Sci. 3(3), 363–389, 2010) and Tai et al. (SIAM J. Imaging Sci. 4(1), 313–344, 2011). Here we propose a new and general numerical algorithm for solving the mean curvature model which is based on an augmented Lagrangian formulation with a special linearised fixed point iteration and a nonlinear multigrid method. The algorithm improves on Brito-Chen (SIAM J. Imaging Sci. 3(3), 363–389, 2010) and Tai et al. (SIAM J. Imaging Sci. 4(1), 313–344, 2011). Although the idea of an augmented Lagrange method has been used in other contexts, both the treatment of the boundary conditions and the subsequent algorithms require careful analysis as standard approaches do not work well. After constructing two fixed point methods, we analyze their smoothing properties and use them for developing a converging multigrid method. Finally numerical experiments are conducted to illustrate the advantages by comparing with other related algorithms and to test the effectiveness of the proposed algorithms.  相似文献   

12.
In this article, by introducing a class of nonlinear separation functions, the image space analysis is employed to investigate a class of constrained optimization problems. Furthermore, the equivalence between the existence of nonlinear separation function and a saddle point condition for a generalized Lagrangian function associated with the given problem is proved.  相似文献   

13.
The growth of the Internet has increased the phenomenon of digital piracy, in multimedia objects, like software, image, video, audio and text. Therefore it is strategic to individualize and to develop methods and numerical algorithms, which are stable and have low computational cost, that will allow us to find a solution to these problems. We describe a digital watermarking algorithm for color image protection and authenticity: robust, not blind, and wavelet-based. The use of Discrete Wavelet Transform is motivated by good time-frequency features and a good match with Human Visual System directives. These two combined elements are important for building an invisible and robust watermark. Moreover our algorithm can work with any image, thanks to the step of pre-processing of the image that includes resize techniques that adapt to the size of the original image for Wavelet transform. The watermark signal is calculated in correlation with the image features and statistic properties. In the detection step we apply a re-synchronization between the original and watermarked image according to the Neyman–Pearson statistic criterion. Experimentation on a large set of different images has been shown to be resistant against geometric, filtering, and StirMark attacks with a low rate of false alarm.  相似文献   

14.
In this paper, we propose a new 2D segmentation model including geometric constraints, namely interpolation conditions, to detect objects in a given image. We propose to apply the deformable models to an explicit function using the level set approach (Osher and Sethian [24]); so, we avoid the classical problem of parameterization of both segmentation representation and interpolation conditions. Furthermore, we allow this representation to have topological changes. A problem of energy minimization on a closed subspace of a Hilbert space is defined and introducing Lagrange multipliers enables us to formulate the corresponding variational problem with interpolation conditions. Thus the explicit function evolves, while minimizing the energy and it stops evolving when the desired outlines of the object to detect are reached. The stopping term, as in the classical deformable models, is related to the gradient of the image. Numerical results are given. AMS subject classification 74G65, 46-xx, 92C55  相似文献   

15.
In this paper, we propose a new variational model for image segmentation. Our model is inspired by the complex Ginzburg-Landau model and the semi-norm defined by us. This new model can detect both the convex and concave parts of images. Moreover, it can also detect non-closed edges as well as quadruple junctions. Compared with other methods, the initialization is completely automatic and the segmented images obtained by using our new model could keep fine structures and edges of the original images very effectively. Finally, numerical results show the effectiveness of our model.  相似文献   

16.
The representation and processing of uncertain concepts are key issue for both the study of artificial intelligence with uncertainty and human knowledge processing. The intension and extension of a concept can be transformed automatically in the human cognition process, while it is difficult for computers. A Gaussian cloud model (GCM) is used to realize the cognitive transformation between intension and extension of a concept through computer algorithms, including forward Gaussian cloud transformation (FGCT) algorithms and backward Gaussian cloud transformation (BGCT) algorithms. A FGCT algorithm can transform a concept’s intension into extension, and a BGCT algorithm can implement the cognitive transformation from a concept’s extension to intension. In this paper, the authors perform a thorough analysis on the existing BGCT algorithms firstly, and find that these BGCT algorithms have some drawbacks. They cannot obtain the stable intension of a concept sometimes. For this reason, a new backward Gaussian cloud cognitive transformation algorithm based on sample division is proposed. The effectiveness and convergence of the proposed method is analyzed in detail, and some comparison experiments on obtaining the concept’s intension and applications to image segmentation are conducted to evaluate this method. The results show the stability and performance of our method.  相似文献   

17.
An image segmentation algorithm called"segmentation based on the localized subspace iterations"(SLSI)is proposed in this paper.The basic idea is to combine the strategies in Ncut algorithm by Shi and Malik in 2000 and the LSI by E,Li and Lu in 2007.The LSI is applied to solve an eigenvalue problem associated with the affinity matrix of an image,which makes the overall algorithm linearly scaled.The choices of the partition number,the supports and weight functions in SLSI are discussed.Numerical experiments for real images show the applicability of the algorithm.  相似文献   

18.
In this paper, a novel image encryption scheme is proposed based on reversible cellular automata (RCA) combining chaos. In this algorithm, an intertwining logistic map with complex behavior and periodic boundary reversible cellular automata are used. We split each pixel of image into units of 4 bits, then adopt pseudorandom key stream generated by the intertwining logistic map to permute these units in confusion stage. And in diffusion stage, two-dimensional reversible cellular automata which are discrete dynamical systems are applied to iterate many rounds to achieve diffusion on bit-level, in which we only consider the higher 4 bits in a pixel because the higher 4 bits carry almost the information of an image. Theoretical analysis and experimental results demonstrate the proposed algorithm achieves a high security level and processes good performance against common attacks like differential attack and statistical attack. This algorithm belongs to the class of symmetric systems.  相似文献   

19.
In this paper, we present a new clustering method that involves data envelopment analysis (DEA). The proposed DEA-based clustering approach employs the piecewise production functions derived from the DEA method to cluster the data with input and output items. Thus, each evaluated decision-making unit (DMU) not only knows the cluster that it belongs to, but also checks the production function type that it confronts. It is important for managerial decision-making where decision-makers are interested in knowing the changes required in combining input resources so it can be classified into a desired cluster/class. In particular, we examine the fundamental CCR model to set up the DEA clustering approach. While this approach has been carried for the CCR model, the proposed approach can be easily extended to other DEA models without loss of generality. Two examples are given to explain the use and effectiveness of the proposed DEA-based clustering method.  相似文献   

20.
Image segmentation is a hot topic in image science. In this paper we present a new variational segmentation model based on the theory of Mumford-Shah model. The aim of our model is to divide noised image, according to a certain criterion, into homogeneous and smooth regions that should correspond to structural units in the scene or objects of interest. The proposed region-based model uses total variation as a regularization term, and different fidelity term can be used for image segmentation in the cases of physical noise, such as Gaussian, Poisson and multiplicative speckle noise. Our model consists of five weighted terms, two of them are responsible for image denoising based on fidelity term and total variation term, the others assure that the three conditions of adherence to the data, smoothing, and discontinuity detection are met at once. We also develop a primal-dual hybrid gradient algorithm for our model. Numerical results on various synthetic and real images are provided to compare our method with others,these results show that our proposed model and algorithms are effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号