首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of micro-scale experiments have demonstrated that the mechanical property of some metals and polymers on the order of micron scale are size dependence. Taking into account the size effect on the mechanical property of materials and the inherent nonlinear property of electrostatic force, the static pull-in behavior of an electrostatically actuated Bernoulli–Euler microbeam is analyzed on the basis of a modified couple stress theory. The approximate analytical solutions to the pull-in voltage and pull-in displacement of the microbeam are derived by using the Rayleigh–Ritz method. The results show that the normalized pull-in voltage of the microbeam increases by a factor of 3.1 as the microbeam thickness equals to the material length scale parameter and exhibits size effect remarkably. However, the size effect on the pull-in voltage is almost diminishing as the microbeam thickness is far greater than the material length scale parameter. The normalized pull-in displacement of the microbeam exhibits size independence and equals to 0.448 and 0.398 for the cantilever beam and clamped–clamped beam, respectively.  相似文献   

2.
In the present paper, a non-classical model for functionally graded annular sector microplates under distributed transverse loading is developed based on the modified couple stress theory and the first-order shear deformation plate theory. The model contains a single material length scale parameter which can capture the size effect. The material properties are graded through the thickness of plates according to a power-law distribution of the volume fraction of the constituents. The equilibrium equations and boundary conditions are simultaneously derived from the principle of minimum total potential energy. The system of equilibrium equations is then solved using the generalized differential quadrature method. The effects of length scale parameter, power-law index and geometrical parameters on the bending response of annular sector plates subjected to distributed transverse loading are investigated.  相似文献   

3.
Buckling analysis of functionally graded micro beams based on modified couple stress theory is presented. Three different beam theories, i.e. classical, first and third order shear deformation beam theories, are considered to study the effect of shear deformations. To present a profound insight on the effect of boundary conditions, beams with hinged-hinged, clamped–clamped and clamped–hinged ends are studied. Governing equations and boundary conditions are derived using principle of minimum potential energy. Afterwards, generalized differential quadrature (GDQ) method is applied to solve the obtained differential equations. Some numerical results are presented to study the effects of material length scale parameter, beam thickness, Poisson ratio and power index of material distribution on size dependent buckling load. It is observed that buckling loads predicted by modified couple stress theory deviates significantly from classical ones, especially for thin beams. It is shown that size dependency of FG micro beams differs from isotropic homogeneous micro beams as it is a function of power index of material distribution. In addition, the general trend of buckling load with respect to Poisson ratio predicted by the present model differs from classical one.  相似文献   

4.
AFM has been one of the most accurate instruments for measuring intermolecular forces and surface topography in the nano-scale. Micro-cantilever (MC) with piezoelectric layer has been used to improve the AFM performance. The Classic Continuum Mechanics (CCM) which currently used to develop the governing equation leads to noticeable errors. Hence, the accuracy of the governing equations for examining the MC vibrational behavior needs to be improved by using a modified model. In response to this need, the Modified Couple Stress theory (MCS) based on the Timoshenko beam model has been employed in this research. The governing equations have been derived using the Hamilton's principle and solved using the Differential Quadrature (DQ) method. In the modeling, the geometric discontinuities resulting from the presence of a piezoelectric layer enclosed between electrodes and MC surface area variations resulting from the connection of the probe to the MC have been considered. Moreover, the coupling effects of piezoelectric on MC stiffness have been taken into account. The results have revealed that the size parameter not only affects the frequency and amplitude but also improves the accuracy of the results when compared with the CCM theory. Moreover, the effects of geometric parameters on the piezoelectric MC frequency have been examined.  相似文献   

5.
This paper studies the electro-mechanical shear buckling analysis of piezoelectric nanoplate using modified couple stress theory with various boundary conditions.In order to be taken electric effects into account, an external electric voltage is applied on the piezoelectric nanoplate. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using Hamilton's principle and nonlinear strains of Von-Karman. The modified couple stress theory has been applied to considering small scale effects. An analytical approach was developing to obtain exact results with various boundary conditions. After all, results have been presented by change in some parameters, such as; aspect ratio, effect of various boundary conditions, electric voltage and length scale parameter influences. At the end, results showed that the effect of external electric voltage on the critical shear load occurring on the piezoelectric nanoplate is insignificant.  相似文献   

6.
Electrostatically deflected elastic systems are increasingly used in technical applications. We study a typical situation as a free boundary problem and prove, under quite general hypotheses, the existence of a local branch of solutions. Hadamard’s variational formula is crucial in the proof, which is based on the implicit function theorem in Banach spaces.  相似文献   

7.
In this study, static pull-in instability of electrostatically-actuated microbridges and microcantilevers is investigated considering different nonlinear effects. Galerkin’s decomposition method is utilized to convert the nonlinear differential equations of motion to nonlinear integro-algebraic equations. Afterward, analytic solutions to static deflections of the microbeams are obtained using the homotopy perturbation method. Results are in excellent agreement with those presented in the literature.  相似文献   

8.
A modified couple stress theory and a meshless method is used to study the bending of simply supported micro isotropic plates according to the first-order shear deformation plate theory, also known as the Mindlin plate theory. The modified couples tress theory involves only one length scale parameter and thus simplifies the theory, since experimentally it is easier to determine the single scale parameter. The equations governing bending of the first-order shear deformation theory are implemented using a meshless method based on collocation with radial basis functions. The numerical method is easy to implement, and it provides accurate results that are in excellent agreement with the analytical solutions.  相似文献   

9.
A variational formulation is provided for the modified couple stress theory of Yang et al. by using the principle of minimum total potential energy. This leads to the simultaneous determination of the equilibrium equations and the boundary conditions, thereby complementing the original work of Yang et al. where the boundary conditions were not derived. Also, the displacement form of the modified couple stress theory, which is desired for solving many problems, is obtained to supplement the existing stress-based formulation. All equations/expressions are presented in tensorial forms that are coordinate-invariant. As a direct application of the newly obtained displacement form of the theory, a simple shear problem is analytically solved. The solution contains a material length scale parameter and can capture the boundary layer effect, which differs from that based on classical elasticity. The numerical results reveal that the length scale parameter (related to material microstructures) can have a significant effect on material responses.   相似文献   

10.
A variational formulation is provided for the modified couple stress theory of Yang et al. by using the principle of minimum total potential energy. This leads to the simultaneous determination of the equilibrium equations and the boundary conditions, thereby complementing the original work of Yang et al. where the boundary conditions were not derived. Also, the displacement form of the modified couple stress theory, which is desired for solving many problems, is obtained to supplement the existing stress-based formulation. All equations/expressions are presented in tensorial forms that are coordinate-invariant. As a direct application of the newly obtained displacement form of the theory, a simple shear problem is analytically solved. The solution contains a material length scale parameter and can capture the boundary layer effect, which differs from that based on classical elasticity. The numerical results reveal that the length scale parameter (related to material microstructures) can have a significant effect on material responses.  相似文献   

11.
For the first time in this paper, free vibration and thermal buckling of micro temperature-dependent FG porous circular plate subjected to a nonlinear thermal load are numerically studied. The governing equations are derived based on Hamilton's principal and using both classical and the first-order shear deformation theories in conjunction with the modified couple stress theory. Generalized Differential Quadrature method is applied to solve the equations with associated boundary conditions. The results reveal that the increase of size dependency and the temperature-change would lead to the increase of differences between the first natural frequencies predicted based on the two theories. In contrast, the porosity and the FG power index do have not any effect on that. While the effect of porosity on free vibration of clamped and free plates are negligible, but the effect of porosity for hinged ones is considerable as the temperature-change increase. Moreover, the critical conditions of the plates which are expressed by porosity, FG power index, size dependency, temperature-change and geometrical dimensions are presented, as well. Numerical results are in good agreement with those available in literature in some special cases.  相似文献   

12.
13.
In this paper, a linear size-dependent Timoshenko beam model based on the consistent couple stress theory is developed to capture the size effects. The extended Hamilton's principle is utilized to obtain the governing differential equations and boundary conditions. The general form of boundary conditions and the concentrated loading are employed to determine the exact static/dynamic solution of the beam. Utilizing this solution for the beam's deformation and rotation, the exact shape functions of the consistent couple stress theory (C-CST) is extracted, which leads to the stiffness and mass matrices of a two-node C-CST finite element beam. Due to the complexity and high computational cost of using the exact solution's shape functions, in addition to the Ritz approximate solution, a two primary variable finite element model of C-CST is proposed, and the corresponding general deformation and rotation fields, shape functions, mass and stiffness matrices are calculated. The C-CST is validated by comparing the prediction of different beam models for a benchmark problem. For the fully and partially clamped cantilever, and free-free beams, the size dependency of the formulations is investigated. The static solutions of the classical and consistent couple stress Timoshenko beam models are compared, and a criterion for selecting the proper model is proposed. For a wide range of material properties, the relation between the beam length and length scale parameter is derived. It is shown that the validity domain of the consistent couple stress Timoshenko model barely depends on the beam's constituent material.  相似文献   

14.
This paper addresses a 3D elasticity analytical solution for static deformation of a simply-supported rectangular micro/nanoplate made of both homogeneous and functionally graded (FG) material within the framework of modified couple stress theory. The plate is assumed to be resting on a Winkler–Pasternak elastic foundation, and its modulus of elasticity is assumed to vary exponentially along thickness. By expanding displacement components in double Fourier series along in-plane coordinates and imposing relevant boundary conditions, the boundary value problem (BVP) of plate system, including its governing partial differential equations (PDEs) of equilibrium are reduced to BVP consisting only ordinary ones (ODEs). Parametric studies are conducted among displacement and stress components developed in the plate and FG material gradient index, length scale parameter, and foundation stiffnesses. From the numerical results, it is concluded that the out-of-plane shear stresses are not necessarily zero at the top and bottom surfaces of plate. The results of this investigation may serve as a benchmark to verify further bending analyses of either homogeneous or FG micro/nanoplates on elastic foundation.  相似文献   

15.
The hybrid squeeze-film damper bearing with active control is proposed in this paper and the lubricating with couple stress fluid is also taken into consideration. The pressure distribution and the dynamics of a rigid rotor supported by such bearing are studied. A PD (proportional-plus-derivative) controller is used to stabilize the rotor-bearing system. Numerical results show that, due to the nonlinear factors of oil film force, the trajectory of the rotor demonstrates a complex dynamics with rotational speed ratio s. Poincaré maps, bifurcation diagrams, and power spectra are used to analyze the behavior of the rotor trajectory in the horizontal and vertical directions under different operating conditions. The maximum Lyapunov exponent and fractal dimension concepts are used to determine if the system is in a state of chaotic motion. Numerical results show that the maximum Lyapunov exponent of this system is positive and the dimension of the rotor trajectory is fractal at the non-dimensional speed ratio s = 3.0, which indicate that the rotor trajectory is chaotic under such operation condition. In order to avoid the nonsynchronous chaotic vibrations, an increased proportional gain is applied to control this system. It is shown that the rotor trajectory will leave chaotic motion to periodic motion in the steady state under control action. Besides, the rotor dynamic responses of the system will be more stable by using couple stress fluid.  相似文献   

16.
We present in this paper a short survey of some recent interactions between Nonlinear Analysis and Nonlinear Complementarity. Considering the new relations between Nonlinear Analysis and Complementarity Theory, put in evidence in this paper, we define several open research subjects profitable to both domains.  相似文献   

17.
The nonlinear free vibration of double-walled carbon nanotubes based on the nonlocal elasticity theory is studied in this paper. The nonlinear equations of motion of the double-walled carbon nanotubes are derived by using Euler beam theory and Hamilton principle, with considering the von Kármán type geometric nonlinearity and the nonlinear van der Waals forces. The surrounding elastic medium is formulated as the Winkler model. The harmonic balance method and Davidon–Fletcher–Powell method are utilized for the analysis and simulation of the nonlinear vibration. The simulation results show that the nonlocal parameter, aspect ratio and surrounding elastic medium play more important roles in the nonlinear noncoaxial vibration than those in the coaxial vibration of the double-walled carbon nanotubes. The noncoaxial vibration amplitudes of only considering nonlinear van der Waals forces are larger than those of considering both geometric nonlinearity and nonlinear van der Waals forces.  相似文献   

18.
The aims of this note is to present a new model based on a new representation of the curvature energy in the indeterminate couple stress model and to discuss some related choices from the literature. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The nonlinear governing equation of microbeam based on the strain gradient theory is derived by using a combination of the strain gradient theory and the Hamilton’s principle, and the nonlinear static bending deformation, the post-bucking problem and the nonlinear free vibration are analyzed. The nonlinear term in the nonlinear governing equation is associated with the mean axial extension of the microbeam. The static bending deformation of the clamped–clamped microbeam subjected to transverse force, the critical buckling loads and the nonlinear frequencies of the simple supported microbeam with initial lateral displacement are discussed. It is shown that the size effect is significant when the ratio of characteristic thickness to internal material length scale parameters is approximately equal to one or two, but is diminishing with the increase of the ratio. The results also indicate that the nonlinearity has a great effect on the static and dynamic behavior of microbeam. To attain accurate and reliable characterization of the static and dynamic properties of microbeam, therefore, both the micro structure dependent parameters and the nonlinear term have to be incorporated in the design of micro structures in MEMS or NEMS.  相似文献   

20.
Andrzej Dydyński  Jaroslaw Arabas 《PAMM》2007,7(1):2030013-2030014
We present a novel way for time series prediction. The method is based on the correlation analysis and allows for handling nonlinearities of different type and character. The presented approach results in an approximation model that combines nonlinear units taken from radial basis functions (RBF) and from multilayer perceptrons (MLP). The approach leads to a low mean error of the approximation with a number of parameters significantly smaller when compared to RBF and MLP. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号