首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
星形节点周期结构蜂窝材料是具有负Poisson(泊松)比效应的一种结构性材料.采用有限元方法对其离散并结合Bloch定理来分析弹性波在其内部传播的带隙问题.结果表明:星形节点周期结构蜂窝材料存在宽大的频率禁带且禁带的位置和大小相对稳定;同时星形节点本身的旋转共振模态是材料最低阶禁带形成的主要原因.星形节点周期结构蜂窝材料的以上带隙特性使其在工程中减震降噪方面具有潜在的应用价值.  相似文献   

2.
In this paper, we consider the elastomechanical problems of a honeycomb structure of composite materials. A multiscale finite element method and the postprocessing technique with high accuracy are presented. We will derive the proofs of all theoretical results. Finally, some numerical tests validate the theoretical results of this paper.  相似文献   

3.
The paper aims to introduce the guided lamb wave propagation (GW) in a honeycomb sandwich panels to be used in the health monitoring applications. Honeycomb sandwich panels are well-known as lightweight structures with a good stiffness behavior and a wide range of applications in different industries. Due to the complex geometry and complicated boundary conditions in such a structure, the development of analytical solutions for describing the wave propagation and the interaction of waves with damages is hardly possible. Therefore dimensional finite element simulations have been used to model GW for different frequency ranges and different sandwich panels with different geometrical properties. The waves, which are highly dispersive, have been excited by thin piezoelectric patches attached to the surface of the structure. In the first step, the honeycomb panel has been simplified as an orthotropic layered continuum medium. The required material data have been calculated by applying a numerical homogenization method for the honeycomb core layer. The wave propagation has been compared in the homogenized model with the real geometry of a honeycomb sandwich panel. Such calculations of high frequency ultrasonic waves are costly, both in creating a proper finite element model as well as in the required calculation time. In this paper the influence of changes in the geometry of the sandwich panel on the wave propagation is presented. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In lots of lightweight applications, constructions are also made by honeycomb sandwiches but little is known about failure and dynamic behavior of sandwich plate connections. In this research, an experimental and simulation study of the mechanical and failure behavior of honeycomb sandwich plates and joints are performed. In detail, series of tensile test have been conducted under quasi static conditions and failure behavior and resistance of the specimens are investigated. The specimens are made by phenolic resin-impregnated aramid paper as core and two different layers of glass fiber reinforced plastic as face sheets in each side. In addition to the experimental tests, numerical simulation with finite element models are performed in Abaqus. Failure modes are investigated and finally a good agreement between test data and simulation results is achieved. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
为研究碳纤维复合材料(CFRP)曲壁蜂窝结构在三点弯曲载荷作用下的承载特性与失效模式,对不同芯层高度、面板厚度的结构进行了理论预报、数值模拟及试验.首先,根据夹芯结构的主要失效模式,提出了相应的理论预报公式,并绘制了失效机制图;其次,建立了CFRP曲壁蜂窝夹芯结构的有限元仿真模型,对其在三点弯曲载荷作用下的典型失效行为进行模拟;最后,通过模压成型工艺制备了不同尺寸的CFRP曲壁蜂窝夹芯结构,并将试验结果与理论、模拟结果进行比较.结果表明,蜂窝夹芯结构承载能力与芯层高度、面板厚度密切相关,结构芯层及面板刚度随其尺寸的减小而下降,导致结构失效模式由面芯脱黏失效变为面板压溃失效.  相似文献   

6.
7.
蜂窝夹芯板在飞行器、高速列车等领域有广泛的用途,对其开展振动分析具有明确的科学价值及工程意义.为区别于诸简支等传统约束边界,提出了弹性约束边界下蜂窝夹芯板结构的自由振动特性分析方法.具体来说,首先通过将蜂窝夹芯层等效为各向异性板,将夹芯板问题转变为三层板结构.进一步地,将板结构的位移场函数由改进的二维Fourier级数表示,并基于能量原理的Rayleigh Ritz法得到结构的固有频率和固有振型,理论预测结果与数值模拟分析吻合较好.提出的理论模型可用于系统讨论约束边界对蜂窝夹芯结构自由振动特性的影响,为此类结构的约束方案设计提供理论依据.  相似文献   

8.
B. Zhou  M. Stoffel  K. Gavenis  D. Weichert 《PAMM》2011,11(1):137-138
The aim of the presented work is to characterize the mechanical properties of different types of articular cartilage replacement materials. For this propose an elastic-diffusion model is developed to identify the elastic and diffusion properties of the replacement materials. A set of unconfined compression tests were performed with several kinds of implants. By means of finite element simulation integrated with an user-defined material model, the material parameters were identified. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A major thrust of the transportation industries in the US is the incorporation of advanced structural materials in airplanes and automobiles. These advanced materials include metal matrix composites, where particulate or whisker reinforcements stiffen and strengthen a ductile phase matrix. In aerospace structures, specific stiffness, improved strength, and weight reduction are key factors. Both in the certain parts of the airframe structure and in the engine fan containment area, increased emphasis is being given to the ability of the material to resist penetration from engine debris and other projectiles which might impact the aircraft structures. Experimental measurements of the ballistic limit velocity of a material versus material thickness gives a method to rank the relative penetration performance of aircraft structural materials. Dynamic finite element analysis aids in understanding the experimental results and in predicting the aircraft debris containment response. For certain aluminum alloys and metal laminates, the relationship between the ballistic limit velocity and plate thickness is linear, while for an aerospace titanium alloy, the ballistic penetration response is more complex.  相似文献   

10.
Based on the negative Poisson’s ratio effect of the re-entrant honeycomb, the finite element simulation of its buckling mechanical properties was carried out, and 2 buckling modes other than those of the traditional hexagonal honeycomb structures were obtained. The beam-column theory was applied to analyze the buckling strength and mechanism of the 2 buckling modes, where the equilibrium equations including the beam end bending moments and rotation angles were established. The stability equation was built through application of the buckling critical condition, and then the analytical expression of the buckling strength was obtained. The re-entrant honeycomb specimen was printed with the additive manufacturing technology, and its buckling performance was verified by experiments. The results show that, the buckling modes vary significantly under different biaxial loading conditions; the re-entrant honeycomb would buckle under biaxial tension due to the auxetic effect, being quite different from the traditional honeycomb structure; the typical buckling bifurcation phenomenon emerges in the analysis of the buckling failure surfaces under biaxial stress states. This research provides a significant guide for the study on the failure of re-entrant honeycomb structures due to instability, and the active application of this instability to achieve special mechanical properties. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

11.
基地化保障模式对飞机保障资源需求的影响是制约其发展的重要问题.基于离散事件仿真(DES)方法建立了航空兵场站四站保障过程的数学模型,考虑了四站装备自身故障的影响,并在所建模型的基础上提出运用离散系统仿真软件ARENA对四站保障过程进行仿真.仿真结果表明,与现行的航空兵场站单机种保障策略相比,基地化保障模式能够减少各个机种通用的四站装备数量需求,而单个机种特有的四站装备需求不变.  相似文献   

12.
This paper presents the finite element modelling of metal powder compaction process at elevated temperature. In the modelling, the behaviour of powder is assumed to be rate independent thermo-elastoplastic material where the material constitutive laws are derived based on a continuum mechanics approach. The deformation process of metal powder has been described by a large displacement based finite element formulation. The Elliptical Cap yield model has been used to represent the deformation behaviour of the powder mass during the compaction process. This yield model was tested and found to be appropriate to represent the compaction process. The staggered-incremental-iterative solution strategy has been established to solve the non-linearity in the systems of equations. Some numerical simulation results were validated through experimentation, where a good agreement was found between the numerical simulation results and the experimental data.  相似文献   

13.
Ti6Al4V titanium alloy is often used in the aircraft industry due to its good strength and toughness etc. However, it is very difficult to simulate high speed machining of titanium alloy using the finite element method (FEM). The reason is that the high speed, large deformation and high strain rate of metal material at high temperature etc. will lead to the element distortions and other numerical difficulties. In contrast with FEM, material point method (MPM) has the advantage of simulating extreme large deformation, fracture and impact problems. Therefore, it is specially suitable for dealing with high speed cutting process. In many existing researches about the high speed cutting process using Johnson−Cook constitutive model, the material dynamic recrystallization softening effect under high pressure and high temperature has not been considered. For this, three modified Johnson−Cook constitutive models for Ti6Al4V titanium alloy are adopted and the parameters for these models were obtained by the split Hopkinson pressure bar (SHPB) test considering the critical strain values, high-temperature range and dynamic recrystallization phenomenon. Furthermore, to ensure the numerical accuracy, the transient heat conduction algorithm is employed in MPM implementation. Finally, comparison and discussion are carried out between the experimental and the simulation data, which show that the high speed cutting process can be better simulated using the modified Johnson−Cook constitutive models.  相似文献   

14.
The effect of polyvinyl chloride (PVC) foam filler on elastic properties of a regular hexagonal aluminum honeycomb core is studied. The unit cell strain energy homogenization approach based on the finite element method (FEM) within ABAQUS code is applied for prediction of effective material constants of the foam-filled honeycomb core. The developed FE model is then used to observe a three-dimensional stress state over the hexagonal unit cell and, thereby, to assess the influence of the foam-filling on the distribution of the local interfacial stresses. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
A successful material design process for novel textile reinforced composites requires an integrated simulation of the material behaviour and the estimation of the effective properties used in a macroscopic structural analysis. In this context the Extended Finite Element Method (X-FEM) is used to model the behavior of materials that show a complex structure on the mesoscale efficiently. A homogenization technique is applied to compute effective macroscopic stiffness parameters. This contribution gives an outline of the implementation of the X-FEM for complex multi-material structures. A modelling procedure is presented that allows for the automated generation of an extended finite element model for a specific representative volume element. Furthermore, the problem of branching material interfaces arising from complex textile reinforcement architectures in combination with high fibre volume fractions will be addressed and an appropriate solution is proposed. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
传统的点阵结构一旦制备完成,其力学性能通常在使用寿命内保持不变。设计和制造具有环境适应特性的智能点阵结构,可编程地感知和响应外界变化(例如光强、压强、溶液、温度、电磁场、电化学激励),并在时间和空间上进行形状重构、模式转换和性能调控,仍然是人造材料研究领域重要的科学挑战。该文采用具有不同玻璃化转变温度和温度依赖性的多种聚合物材料,通过合理设计材料空间分布,提出了一类具有热可编程力学响应能力的多材料点阵结构。结合理论分析和有限元模拟,研究了组分材料相对刚度对多材料点阵结构的Poisson比、变形模式以及结构稳定性的影响。通过温度变化实现了对多材料点阵结构弹性常数、压溃响应和结构稳定性的调控,使多材料点阵结构表现出极大的热变形、超弹性和形状记忆效应。为设计和制造自适应保护装备、生物医学设备、航空航天领域的变形结构、柔性电子设备、自组装结构和可变形软体机器人等开辟了新途径。  相似文献   

17.
氧化铝陶瓷材料的力学性能受温度影响显著,因此使用相场法模拟热冲击裂纹的扩展时有必要考虑损伤判据的温度相关性.在现有热力学相场模型的基础上通过引入温度相关性损伤判据,修正了相场模型的控制方程.利用该模型对氧化铝陶瓷热冲击实验进行有限元模拟,并将模拟结果与氧化铝热冲击实验结果和不考虑温度相关性损伤判据的有限元模拟结果进行对比.结果表明,通过引入温度相关性损伤判据,可实现对热冲击裂纹的萌生和扩展过程更合理的模拟.  相似文献   

18.
Composite materials are widely used in different industrial fields, because of their good formability and their high strength to weight ratio. In the present work a triple-layered sandwich composite is investigated. Experimental tests at room temperature are carried out for the materials constituting the composite. A finite element model of a deep-drawing process of the composite is performed, where a finite strain constitutive model for the metal part, with material parameters calibrated to uniaxial tensile tests, has been implemented. Experimental results are compared to the numerical simulations in view of validation purposes. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper, the second order statistics of post buckling response of functionally graded materials plate (FGM) subjected to mechanical and thermal loading with nonuniform temperature changes subjected to temperature independent (TID) and dependent (TD) material properties is examined. Material properties such as material properties of each constituent’s materials, volume fraction index are taken as independent random input variables. The basic formulation is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear kinematic using modified C0 continuity. A direct iterative based C0 nonlinear finite element method (FEM) combined with mean centered first order perturbation technique (FOPT) proposed by last two authors for the composite plate is extended for Functionally Graded Materials (FGMs) plate with reasonable accuracy to compute the second order statistics (mean and coefficient of variation) of the post buckling load response of the FGM plates. The effect of random material properties with amplitude ratios, volume fraction index, plate thickness ratios, aspect ratios, boundary conditions and types of loadings subjected to TID and TD material properties are presented through numerical examples. The performance of outlined present approach is validated with the results available in literatures and independent Monte Carlo simulation (MCS).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号