首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Despite its great applicability in several industries, the combined cutting stock and lot-sizing problem has not been sufficiently studied because of its great complexity. This paper analyses the trade-off that arises when we solve the cutting stock problem by taking into account the production planning for various periods. An optimal solution for the combined problem probably contains non-optimal solutions for the cutting stock and lot-sizing problems considered separately. The goal here is to minimize the trim loss, the storage and setup costs. With a view to this, we formulate a mathematical model of the combined cutting stock and lot-sizing problem and propose a solution method based on an analogy with the network shortest path problem. Some computational results comparing the combined problem solutions with those obtained by the method generally used in industry—first solve the lot-sizing problem and then solve the cutting stock problem—are presented. These results demonstrate that by combining the problems it is possible to obtain benefits of up to 28% profit. Finally, for small instances we analyze the quality of the solutions obtained by the network shortest path approach compared to the optimal solutions obtained by the commercial package AMPL.  相似文献   

2.
Variable neighborhood search: Principles and applications   总被引:5,自引:0,他引:5  
Systematic change of neighborhood within a possibly randomized local search algorithm yields a simple and effective metaheuristic for combinatorial and global optimization, called variable neighborhood search (VNS). We present a basic scheme for this purpose, which can easily be implemented using any local search algorithm as a subroutine. Its effectiveness is illustrated by solving several classical combinatorial or global optimization problems. Moreover, several extensions are proposed for solving large problem instances: using VNS within the successive approximation method yields a two-level VNS, called variable neighborhood decomposition search (VNDS); modifying the basic scheme to explore easily valleys far from the incumbent solution yields an efficient skewed VNS (SVNS) heuristic. Finally, we show how to stabilize column generation algorithms with help of VNS and discuss various ways to use VNS in graph theory, i.e., to suggest, disprove or give hints on how to prove conjectures, an area where metaheuristics do not appear to have been applied before.  相似文献   

3.
A coupling cutting stock-lot sizing problem in the paper industry   总被引:2,自引:0,他引:2  
An important production programming problem arises in paper industries coupling multiple machine scheduling with cutting stocks. Concerning machine scheduling: how can the production of the quantity of large rolls of paper of different types be determined. These rolls are cut to meet demand of items. Scheduling that minimizes setups and production costs may produce rolls which may increase waste in the cutting process. On the other hand, the best number of rolls in the point of view of minimizing waste may lead to high setup costs. In this paper, coupled modeling and heuristic methods are proposed. Computational experiments are presented.  相似文献   

4.
In this paper, we propose to solve large-scale multiple-choice multi-dimensional knapsack problems. We investigate the use of the column generation and effective solution procedures. The method is in the spirit of well-known local search metaheuristics, in which the search process is composed of two complementary stages: (i) a rounding solution stage and (ii) a restricted exact solution procedure. The method is analyzed computationally on a set of problem instances of the literature and compared to the results reached by both Cplex solver and a recent reactive local search. For these instances, most of which cannot be solved to proven optimality in a reasonable runtime, the proposed method improves 21 out of 27.  相似文献   

5.
This paper reports on our attempt to design an efficient exact algorithm based on column generation for the cutting stock problem. The main focus of the research is to study the extend to which standard branch-and-bound enhancement features such as variable fixing, the tightening of the formulation with cutting planes, early branching, and rounding heuristics can be usefully incorporated in a branch-and-price algorithm. We review and compare lower bounds for the cutting stock problem. We propose a pseudo-polynomial heuristic. We discuss the implementation of the important features of the integer programming column generation algorithm and, in particular, the implementation of the branching scheme. Our computational results demonstrate the efficiency of the resulting algorithm for various classes of bin packing and cutting stock problems. Received October 18, 1996 / Revised version received May 14, 1998?Published online July 19, 1999  相似文献   

6.
In this paper we propose a general variable neighborhood search heuristic for solving the uncapacitated single allocation p-hub center problem (USApHCP). For the local search step we develop a nested variable neighborhood descent strategy. The proposed approach is tested on benchmark instances from the literature and found to outperform the state-of-the-art heuristic based on ant colony optimization. We also test our heuristic on large scale instances that were not previously considered as test instances for the USApHCP. Moreover, exact solutions were reached by our GVNS for all instances where optimal solutions are known.  相似文献   

7.
The multi-item, single-level, capacitated, dynamic lot-sizing problem, commonly abbreviated as CLSP, is considered. The problem is cast in a tight mixed-integer programming model (MIP); tight in the sense that the gap between the optimal value of MIP and that of its linear programming relaxation (LP) is small. The LP relaxation of MIP is then solved by column generation. The resulting feasible solution is further improved by adopting the corresponding set-up schedule and re-optimizing variable costs by solving a minimum-cost network flow (trans-shipment) problem. Subsequently, the improved solution is used as a starting solution for a tabu search procedure, with the worth of moves assessed using the same trans-shipment problem. Results of computational testing of benchmark problem instances are presented. They show that the heuristic solutions obtained are effective, in that they are extremely close to the best known solutions. The computational efficiency makes it possible to solve realistically large problem instances routinely on a personal computer; in particular, the solution procedure is most effective, in terms of solution quality, for larger problem instances.  相似文献   

8.

This paper addresses the integration of the lot-sizing problem and the one-dimensional cutting stock problem with usable leftovers (LSP-CSPUL). This integration aims to minimize the cost of cutting items from objects available in stock, allowing the bringing forward production of items that have known demands in a future planning horizon. The generation of leftovers, that will be used to cut future items, is also allowed and these leftovers are not considered waste in the current period. Inventory costs for items and leftovers are also considered. A mathematical model for the LSP-CSPUL is proposed to represent this problem and an approach, using the simplex method with column generation, is proposed to solve the linear relaxation of this model. A heuristic procedure, based on a relax-and-fix strategy, was also proposed to find integer solutions. Computational tests were performed and the results show the contributions of the proposed mathematical model, as well as, the quality of the solutions obtained using the proposed method.

  相似文献   

9.
The periodic vehicle routing problem (PVRP) consists in establishing a planning of visits to clients over a given time horizon so as to satisfy some service level while optimizing the routes used in each time period. The tactical planning model considered here restricts its attention to scheduling visits and assigning them to vehicles while leaving sequencing decisions for an underlying operational model. The objective is twofold: to optimize regional compactness of the routes in a desire to specialize routes to restricted geographical area and to balance the workload evenly between vehicles. Approximate solutions are constructed using a truncated column generation procedure followed by a rounding heuristic. This mathematical programming based procedure can deal with problems with 50–80 customers over five working days which is the range of size of most PVRP instances treated in the literature with meta-heuristics. The paper highlights the importance of alternative optimization criteria not accounted for in standard operational models and provides insights on the implementation of a column generation based rounding heuristic.  相似文献   

10.
The set covering problem (SCP) calls for a minimum cost family of subsets from n given subsets, which together covers the entire ground set. In this paper, we propose a local search algorithm for SCP, which has the following three characteristics. (1) The use of 3-flip neighborhood, which is the set of solutions obtainable from the current solution by exchanging at most three subsets. As the size of 3-flip neighborhood is O(n3), the neighborhood search becomes expensive if implemented naively. To overcome this, we propose an efficient implementation that reduces the number of candidates in the neighborhood without sacrificing the solution quality. (2) We allow the search to visit the infeasible region, and incorporate the strategic oscillation technique realized by adaptive control of penalty weights. (3) The size reduction of the problem by using the information from the Lagrangian relaxation is incorporated, which is indispensable for solving very large instances. According to computational comparisons on benchmark instances with other existing heuristic algorithms for SCP, our algorithm performs quite effectively for various types of problems, especially for very large-scale instances.  相似文献   

11.
We confront a practical cutting stock problem from a production plant of plastic rolls. The problem is a variant of the well-known one dimensional cutting stock, with particular constraints and optimization criteria defined by the experts of the company. We start by giving a problem formulation in which optimization criteria have been considered in linear hierarchy according to expert preferences, and then propose a heuristic solution based on a GRASP algorithm. The generation phase of this algorithm solves a simplified version which is rather similar to the conventional one dimensional cutting stock. To do that, we propose a Sequential Heuristic Randomized Procedure (SHRP). Then in the repairing phase, the solution of the simplified problem is transformed into a solution to the real problem. For experimental study we have chosen a set of problem instances of com-mon use to compare SHRP with another recent approach. Also, we show by means of examples, how our approach works over instances taken from the real production process. All authors are supported by MEC-FEDER Grant TIN2007-67466-C02-01 and by contract CN-05-127 of the University of Oviedo and the company ERVISA, and by FICYT under grant BP04-021.  相似文献   

12.
One-dimensional cutting stock problem (1D-CSP) is one of the representative combinatorial optimization problems, which arises in many industrial applications. Since the setup costs for switching different cutting patterns become more dominant in recent cutting industry, we consider a variant of 1D-CSP, called the pattern restricted problem (PRP), to minimize the number of stock rolls while constraining the number of different cutting patterns within a bound given by users. For this problem, we propose a local search algorithm that alternately uses two types of local search processes with the 1-add neighborhood and the shift neighborhood, respectively. To improve the performance of local search, we incorporate it with linear programming (LP) techniques, to reduce the number of solutions in each neighborhood. A sensitivity analysis technique is introduced to solve a large number of associated LP problems quickly. Through computational experiments, we observe that the new algorithm obtains solutions of better quality than those obtained by other existing approaches.  相似文献   

13.
We propose an iterated local search based on several classes of local and large neighborhoods for the bin packing problem with conflicts. This problem, which combines the characteristics of both bin packing and vertex coloring, arises in various application contexts such as logistics and transportation, timetabling, and resource allocation for cloud computing. We introduce \({\mathcal O}(1)\) evaluation procedures for classical local-search moves, polynomial variants of ejection chains and assignment neighborhoods, an adaptive set covering-based neighborhood, and finally a controlled use of 0-cost moves to further diversify the search. The overall method produces solutions of good quality on the classical benchmark instances and scales very well with an increase of problem size. Extensive computational experiments are conducted to measure the respective contribution of each proposed neighborhood. In particular, the 0-cost moves and the large neighborhood based on set covering contribute very significantly to the search. Several research perspectives are open in relation to possible hybridizations with other state-of-the-art mathematical programming heuristics for this problem.  相似文献   

14.
In this paper we propose exact solution methods for a bilevel uncapacitated lot-sizing problem with backlogs. This is an extension of the classical uncapacitated lot-sizing problem with backlogs, in which two autonomous and self-interested decision makers constitute a two-echelon supply chain. The leader buys items from the follower in order to meet external demand at lowest cost. The follower also tries to minimize its costs. Both parties may backlog. We study the leader’s problem, i.e., how to determine supply requests over time to minimize its costs in view of the possible actions of the follower. We develop two mixed-integer linear programming reformulations, as well as cutting planes to cut off feasible, but suboptimal solutions. We compare the reformulations on a series of benchmark instances.  相似文献   

15.
We consider the three-stage two-dimensional bin packing problem (2BP) which occurs in real-world applications such as glass, paper, or steel cutting. We present new integer linear programming formulations: models for a restricted version and the original version of the problem are developed. Both only involve polynomial numbers of variables and constraints and effectively avoid symmetries. Those models are solved using CPLEX. Furthermore, a branch-and-price (B&P) algorithm is presented for a set covering formulation of the unrestricted problem, which corresponds to a Dantzig-Wolfe decomposition of the polynomially-sized model. We consider column generation stabilization in the B&P algorithm using dual-optimal inequalities. Fast column generation is performed by applying a hierarchy of four methods: (a) a fast greedy heuristic, (b) an evolutionary algorithm, (c) solving a restricted form of the pricing problem using CPLEX, and finally (d) solving the complete pricing problem using CPLEX. Computational experiments on standard benchmark instances document the benefits of the new approaches: The restricted version of the integer linear programming model can be used to quickly obtain near-optimal solutions. The unrestricted version is computationally more expensive. Column generation provides a strong lower bound for 3-stage 2BP. The combination of all four pricing algorithms and column generation stabilization in the proposed B&P framework yields the best results in terms of the average objective value, the average run-time, and the number of instances solved to proven optimality.  相似文献   

16.
Because most commercial passenger airlines operate on a hub-and-spoke network, small disturbances can cause major disruptions in their planned schedules and have a significant impact on their operational costs and performance. When a disturbance occurs, the airline often applies a recovery policy in order to quickly resume normal operations. We present in this paper a large neighborhood search heuristic to solve an integrated aircraft and passenger recovery problem. The problem consists of creating new aircraft routes and passenger itineraries to produce a feasible schedule during the recovery period. The method is based on an existing heuristic, developed in the context of the 2009 ROADEF Challenge, which alternates between three phases: construction, repair and improvement. We introduce a number of refinements in each phase so as to perform a more thorough search of the solution space. The resulting heuristic performs very well on the instances introduced for the challenge, obtaining the best known solution for 17 out of 22 instances within five minutes of computing time and 21 out of 22 instances within 10 minutes of computing time.  相似文献   

17.
拆卸是产品回收过程最关键环节之一,拆卸效率直接影响再制造成本。本文在分析现有模型不足基础上,考虑最小化总拆卸时间,建立多目标顺序相依拆卸线平衡问题优化模型,并提出了一种自适应进化变邻域搜索算法。所提算法引入种群进化机制,并采用一种组合策略构建初始种群,通过锦标赛法选择个体进化;在局部搜索时,设计了邻域结构自适应选择策略,并采用基于交叉的全局学习机制加速跳出局部最优,以提高算法寻优能力。对比实验结果,证实了所提模型的合理性以及算法的高效性。  相似文献   

18.
We consider a generalization of the well-known capacitated facility location problem with single source constraints in which customer demand contains a flexible dimension. This work focuses on providing fast and practically implementable optimization-based heuristic solution methods for very large scale problem instances. We offer a unique approach that utilizes a high-quality efficient heuristic within a neighborhood search to address the combined assignment and fixed-charge structure of the underlying optimization problem. We also study the potential benefits of combining our approach with a so-called very large-scale neighborhood search (VLSN) method. As our computational test results indicate, our work offers an attractive solution approach that can be tailored to successfully solve a broad class of problem instances for facility location and similar fixed-charge problems.  相似文献   

19.
We discuss cutting stock problems (CSPs) from the perspective of the paper industry and the financial impact they make. Exact solution approaches and heuristics have been used for decades to support cutting stock decisions in that industry. We have developed polylithic solution techniques integrated in our ERP system to solve a variety of cutting stock problems occurring in real world problems. Among them is the simultaneous minimization of the number of rolls and the number of patterns while not allowing any overproduction. For two cases, CSPs minimizing underproduction and CSPs with master rolls of different widths and availability, we have developed new column generation approaches. The methods are numerically tested using real world data instances. An assembly of current solved and unsolved standard and non-standard CSPs at the forefront of research are put in perspective.  相似文献   

20.
A wireless sensor network is a network consisting of distributed autonomous electronic devices called sensors. In this work, we develop a mixed-integer linear programming model to maximize the network lifetime by optimally determining locations of sensors and sinks, sensor-to-sink data flows, and activity schedules of the deployed sensors subject to coverage, flow conservation, energy consumption and budget constraints. Since solving this model is difficult except for very small instances, we propose a heuristic method which works on a reformulation of the problem. In the first phase of this heuristic, the linear programming relaxation of the reformulation is solved by column generation. The second phase consists of constructing a feasible solution for the original problem using the columns obtained in the first phase. Computational experiments conducted on a set of test instances indicate that both the accuracy and the efficiency of the proposed heuristic is quite promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号