首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地层气体侵入井筒后形成气液两相流动体系,气体沿井筒向上滑脱运移,随着所受压力的降低其发展变化过程会很快,如果不及时处理就会演变为井涌、井喷,甚至井喷失控.因此,准确的预测侵入气体沿井筒的上升规律,有助于认识气侵发展过程,同时为现场采取井控措施提供理论依据,有效避免井下复杂事故.基于侵入气体沿井筒运动的力学特性,建立了气体的上升速度模型,模型模拟分析表明:地层渗透率越高、机械钻速越快、单位时间内侵入井筒的气体量越多、气体上升速度越快,井底压力波动越大;施加一定的井口回压可以有效抑制气体的膨胀运移.  相似文献   

2.
基于隔水管注气双梯度钻井过程中隔水管环空多相流特性,建立了隔水管注气双梯度钻井环空多相流模型,采用有限差分法对模型进行求解,结合墨西哥湾某口深水井现场数据,分析了钻井参数对井底压力和环空压力的影响,并对注气流量的影响因素进行讨论.研究结果表明:隔水管注气双梯度钻井井底压力比常规钻井更低,更适用于海底窄密度窗口钻井;隔水管注气双梯度钻井在钻井过程中注气流量的大小对井底压力和环空压力影响较大;水深和钻井液密度是影响注气流量的两个重要因素.在隔水管注气双梯度钻井参数设计时,应选择合适的注气流量,且钻井液密度不宜过大,以确保隔水管注气双梯度钻井安全.该研究对隔水管注气双梯度钻井设计及现场作业具有指导意义.  相似文献   

3.
Unsteady-state or transient two-phase flow, caused by any change in rates, pressures or temperature at any location in a two-phase flow line, may last from a few seconds to several hours. In general, these changes are an order of magnitude longer than the transient encountered during single-phase flow. The primary reason for this phenomenon is that the velocity of wave propagation in a two-phase mixture is significantly slower. Interfacial transfer of mass, momentum and energy further complicate the problem. It is primarily due to the numerical difficulties anticipated in accurately modeling transient two-phase flow that the state of the art in this important area is restricted to a handful of studies with direct applicability to petroleum and gas engineering. A limited amount of information on the subject of two-phase transport phenomena is available in the petroleum engineering literature. Most of the publications for two-phase flow of gas assume that temperature is constant over the entire length of the pipeline.This study is the first effort to simulate the non-isothermal, one-dimensional, transient homogenous two-phase flow gas pipeline system using two-fluid conservation equations. The modified Peng–Robinson equation of state is used to calculate the vapor–liquid equilibrium in multi-component natural gas to find the vapor and liquid compressibility factors. Mass transfer between the gas and the liquid phases is treated rigorously through flash calculation, making the algorithm capable of handling retrograde condensation. The liquid droplets are assumed to be spheres of uniform size, evenly dispersed throughout the gas phase.The method of solution is the fully implicit finite difference method. This method is stable for gas pipeline simulations when using a large time step and therefore minimizes the computation time. The algorithm used to solve the non-linear finite difference thermo-fluid equations for two-phase flow through a pipe is based on the Newton–Raphson method.The results show that the liquid condensate holdup is a strong function of temperature, pressure, mass flow rate, and mixture composition. Also, the fully implicit method has advantages, such as the guaranteed stability for large time step, which is very useful for simulating long-term transients in natural gas pipeline systems.  相似文献   

4.
A three-dimensional CFD model was developed in this work to simulate hydrodynamic characteristics of a gas–liquid two-phase stirred tank with two six-bladed turbines and four baffles, coupling of the Multiple Size Group model to determine bubble size distribution. Important hydrodynamic parameters of the multi-phase system such as volume-averaged overall and time-averaged local gas holdups and axial liquid velocities along time and transversal courses were simulated and analyzed in detail, under varied operating conditions (inlet air flow rate and impeller rotation speed). Model predictions of local transient gas holdup and liquid velocity distributions on vertical and horizontal sections of the tank were also carried out. The overall flow patterns were discussed in detail to assess the mixing. Bubble size distributions were further predicted to reveal the unique properties of gas phase. Experimental measurements of overall gas holdups and local axial liquid velocities were used to validate the developed model.  相似文献   

5.
The present paper introduces a new interfacial marker-level set method (IMLS) which is coupled with the Reynolds averaged Navier–Stokes (RANS) equations to predict the turbulence-induced interfacial instability of two-phase flow with moving interface. The governing RANS equations for time-dependent, axisymmetric and incompressible two-phase flow are described in both phases and solved separately using the control volume approach on structured cell-centered collocated grids. The transition from one phase to another is performed through a consistent balance of kinematic and dynamic conditions on the interface separating the two phases. The topological changes of the interface are predicted by applying the level set approach. By fitting a number of interfacial markers on the intersection points of the computational grids with the interface, the interfacial stresses and consequently, the interfacial driving forces are easily estimated. Moreover, the normal interface velocity, calculated at the interfacial markers positions, can be extended to the higher dimensional level set function and used for the interface advection process. The performance of linear and non-linear two-equation kε turbulence models is investigated in the context of the considered two-phase flow impinging problem, where a turbulent gas jet impinging on a free liquid surface. The numerical results obtained are evaluated through the comparison with the available experimental and analytical data. The nonlinear turbulence model showed superiority in predicting the interface deformation resulting from turbulent normal stresses. However, both linear and nonlinear turbulence models showed a similar behavior in predicting the interface deformation due to turbulent tangential stresses. In general, the developed IMLS numerical method showed a remarkable capability in predicting the dynamics of the considered two-phase immiscible flow problems and therefore it can be applied to quite a number of interface stability problems.  相似文献   

6.
A system of evolutionary partial differential equations (PDEs) describing the two-phase flow of immiscible fluids, such as water–gas, through porous media is studied. In this formulation, the wetting and nonwetting phases are treated to be incompressible and compressible, respectively. This treatment is indeed necessary when a compressible nonwetting phase is subjected to compression during confinement. The system of PDEs consists of an evolution equation for the wetting-phase saturation and an evolution equation for the pressure in the nonwetting phase. This system is applied to the problem of unsaturated flows to assess gas migration and two-phase flow through engineered and geological barriers for a deep repository for radioactive waste. This paper is primarily concerned with the large time behavior of solutions of this system. Under some realistic assumptions on the data, we derive estimates of the speed of propagation of the gas by water in porous media. Namely, we establish estimates of time stabilization for the water saturation to a constant limit profile. The analysis is based on the energy methods whose main idea involves deriving and studying suitable ordinary differential inequalities. We show that the time of complete displacement of a gas by water may be at most infinite or finite depending essentially on the power parameters defining the capillary pressure and the relative permeabilities. This result is then illustrated with two examples in the context of gas migration in a deep nuclear waste repository. We consider Van Genuchten’s and Brooks–Corey’s models for a two-phase water–gas system.  相似文献   

7.
带屈服值的假塑性流体同心环空稳态波动压力研究   总被引:3,自引:1,他引:2  
管柱在充满钻井液的井眼内运动时所产生的波动压力是影响井眼稳定的主要因素。其大小是制定泥浆附加密度的主要依据。因此要求对实际波动压力的预测有较高的精度,而其精度与泥浆流变模式的选择密切相关。屈服假塑性流体属于三参数模式,因其精度高,近年来国外多用其描述钻井液的流变性.文中以该模式为基础,从理论上推导了定向井同心环空中起下钻或下套管过程中,稳定层流条件下钻井液粘性产生的波动压力计算模式。为便于现场应用,绘制了不同情况下波动压力系数的变化规律。并给出了计算示例。对准确预测钻并作业过程中波动压力的大小、控制起下钻速度提供了理论依据。  相似文献   

8.
根据钻柱力学和动量守恒基本理论,建立了考虑气体钻井液对钻柱内外耦合影响时的钻柱横向振动模型,此模型与一般的梁式结构的振动模型不同,它包含了钻柱轴力、钻柱内注入压力、环空压力和钻柱内气体对钻柱振动的影响.同时给出边界条件和初始条件.通过把系统外激励函数当作控制变量,利用Banach空间几何性质证明了此系统存在唯一最优控制元.  相似文献   

9.
石油钻井和完井过程中,经常出现泥浆、水泥浆和完井液在偏心环空中的流动。Robertson-Stif流体在描述这些流体的流变性时有很高的精度。文中根据Robertson-Stif流体的流变方程和偏心环空环隙间距的几何关系,利用相似原理,求解了该流体在偏心环形空间中作层流轴向流动时适于工程应用的二元速度分布,以及平均流速、流量和压降的表达式。研究表明:液体在偏心环形空间流动时与在同心环空中流动的最大差异,在于流经偏心环空不同间隙处流速的较大差异。文中还把Robertson-Stif流体的计算结果与采用宾汉模式和幂律模式的计算结果进行了对比。  相似文献   

10.
Fluid dynamic processes related to mature oil field development are simulated by applying a numerical algorithm based on the gas–liquid mixture flow equations in a reservoir and a wellbore with allowance for the dynamical interaction in the reservoir–well system. Numerical experiments are performed in which well production characteristics are determined from wellhead parameters.  相似文献   

11.
泥石流固液分相流速计算方法研究   总被引:8,自引:0,他引:8  
泥石流固液分相流速是泥石流对岸坡、防治结构冲击、磨损机理的核心问题.将泥石流体简化为具有相同粒径的固相和具有相同力学性质的液相,基于泥石流体为沿流动方向的一维两相流体,运用两相流理论建立了泥石流固液分相流速控制方程.构建了泥石流平均压力、彻体力及平均表面力的计算方法,尤其通过浆体的Binhanm体流变方程、Bagnold颗粒相互作用试验成果建立了控制体平均表面力计算方法;建立了固液两相流速比例系数,以及理论固相流速与实际流速的比例系数.据此求解控制方程得到了固液分相流速计算方法,该方法既可同时适用于粘性泥石流和稀性泥石流,也可在泥石流爆发以后通过现场采集沉积物分析反求泥石流爆发期间的分相流速.工程实例分析显示,该方法计算结果与实测结果吻合较好.  相似文献   

12.
Summary The concept of helicity is extended to two-phase flow. It turns out that two helicity conservation theorems may be derived for an isothermal non-dissipative bubbly flow. One of the theorems refers to the flow of the continuous liquid phase, while the other concerns the mean flow of the dispersed gas bubbles. The virtual mass of the bubbles plays a significant role.  相似文献   

13.
The k-ε-Sp model, describing two-dimensional gas–solid two-phase turbulent flow, has been developed. In this model, the diffusion flux and slip velocity of solid particles are introduced to represent the particle motion in two-phase flow. Based on this model, the gas–solid two-phase turbulent flow behind a vertical backward-facing step is simulated numerically and the turbulent transport velocities of solid particles with high density behind the step are predicted. The numerical simulation is validated by comparing the results of the numerical calculation with two other two-phase turbulent flow models (k-ε-Ap, k-ε-kp) by Laslandes and the experimental measurements. This model, not only has the same virtues of predicting the longitudinal transport of the solid particles as the present practical two-phase flow models, but also can predict the lateral transport of the solid particles correctly.  相似文献   

14.
The rise of liquid in capillaries, or between two parallel plates as the 2D variant thereof, represents a challenging test case for two-phase flow solvers without a full analytic solution. Four different numerical approaches are compared for the rise of liquid, also providing reference data being of high relevance for capillarity-dominated wetting processes. The used methods are an Arbitrary Lagrangian–Eulerian method (OpenFOAM solver interTrackFoam), a geometric Volume of Fluid code (FS3D), an algebraic Volume of Fluid method (OpenFOAM solver interFoam), and a level-set based extended discontinuous Galerkin discretization (BoSSS).While the transient rise height shows excellent agreement between the different implementations, the velocity fields at the interface demonstrate a different level of local accuracy of the available approaches. Reducing the slip length reduces the overall dynamics of the system, thus yielding a qualitative change in the rise behavior – a behavior that is not covered by simplified ODE models. The obtained rise height results are vailable online: http://dx.doi.org/10.25534/tudatalib-173  相似文献   

15.
16.
The mathematical models of gas–liquid two-phase flow are introduced, in which the multi-mode eXtended Pom–Pom (XPP) model is selected to predict the viscoelastic behavior of polymer melt. The gas-penetration process is simulated using Level Set/SIMPLEC methods, which can capture the moving interfaces at different time, including the gas–melt interface and the melt front. The physical features such as velocity, temperature and elasticity are described at different time. The influences of gas delay time and injection pressure on gas-penetration time and penetration length are analyzed. The numerical results show that the Level Set/SIMPLEC methods can precisely trace the two moving interfaces in gas-penetration process, the fractional coverage increases at very low Deborah numbers, while at higher Deborah numbers the fractional coverage decreases, and the penetration length is affected significantly by gas delay time and injection pressure.  相似文献   

17.
Studies of the effects upon gas-liquid two-phase flows of pipefittings such as expansions, contractions, bends, and valveshave usually concentrated upon pressuredrop correlations andhave not attempted to determine changes in the distributionsof the gas and liquid phases caused by the fitting. However,it is known that such information is important if, for example,flow separators, which divide the gas and liquid phases in avariety of industrial processes, are to function efficiently.It is therefore important to gain an understanding of the influenceupon phase distributions of the common pipe fittings mentionedabove, which will be found in almost any industrial pipeworksystem. As a first step, the dispersion of solid particles carriedby turbulent gas flows through a pipe expansion has been modellednumerically. The commercial fluid-flow code CFDS-FLOW{smalltilde}hDas been used to model the gas flow, together with aneddy interaction model for determination of the motion of thesolid particles. Mean particle velocities and root-mean-squarevalues of the particle velocity fluctuations, as well as particleconcentrations, are evaluated and compared with recent experimentalresults. The influence of different eddy-length and eddy-lifetimespecifications upon the dispersion of particles of various sizesis investigated. It is found that the different eddy characteristicshave little effect on predicted mean particle velocities, whereasfluctuations in particle velocities and particle concentrationare sensitive to the changes made. By comparing the resultswith experimental data, it is possible to draw conclusions aboutthe relative merits of the different eddy specifications.  相似文献   

18.
In this work, we discuss the use of a local model developed previously [1] that describes the multiphase flow of gaseous species and liquid water within a single coal seam to investigate the gas production from a spatially heterogeneous production field. The field is located within the Surat Basin in Queensland, and is composed of a total of 80 production wells spread over a region covering approximately 36 km2. However, not every well is producing gas at any one time and so in this work we take a subset of 42 wells that are the top-producing wells in terms of total gas volume.We utilise a population of models approach to understand the variability in the underlying physical processes, and as a mechanism for dealing with the spatial heterogeneity that arises due to geological variation across the field. We are able to simultaneously obtain a family of parameter sets for each of these wells, in which each set in the family yields a predicted cumulative total gas production curve that matches the measured cumulative production curve for a given well to within an allowable limit of error.By analysing the results of this population of models approach we can identify the similarities between wells based on the parameter distributions, and understand the sensitivity of key model parameters. We show by example that high correlation between wells based on their parameter values may be an indicator of their similarity. A combinatorial sum of the predicted gas production is compared against the individual gas volumes (given in terms of percentage of the total volume) measured at the compression facility as a way of further calibrating a subpopulation of models.  相似文献   

19.
本文研究了低渗透油藏低速非达西油水两相渗流的反问题,建立了基于动态信息的油藏敏感系数计算模型,给出了井底压力和水油比关于渗透率和孔隙度的敏感系数的有效算法,为油藏数值模自动拟合和油藏精细描述算法提供了理论基础。  相似文献   

20.
The paper is devoted to the homogenization of immiscible compressible two-phase two-component flow in heterogeneous porous media. We consider liquid and gas phases, two-component (water and hydrogen) flow in a porous reservoir with periodic microstructure, modeling the hydrogen migration through engineered and geological barriers for a deep repository for radioactive waste. Phase exchange, capillary effects included by the Darcy–Muskat law and Fickian diffusion are taken into account. The hydrogen in the gas phase is supposed compressible and could be dissolved into the water obeying the Henry law. The flow is then described by the conservation of the mass for each component. The microscopic model is written in terms of the phase formulation, i.e. the liquid saturation phase and the gas pressure phase are primary unknowns. This formulation leads to a coupled system consisting of a nonlinear parabolic equation for the gas pressure and a nonlinear degenerate parabolic diffusion–convection equation for the liquid saturation, subject to appropriate boundary and initial conditions. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the coupling in the system. Under some realistic assumptions on the data, we obtain a nonlinear homogenized problem with effective coefficients which are computed via a cell problem. We rigorously justify this homogenization process for the problem by using the two-scale convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号