首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This note deals with a theoretical analysis of the existence, non-uniqueness and non-existence of similarity solutions of the two-dimensional mixed convection boundary-layer flow over a vertical surface with a power law temperature. Here, it is assumed that the surface is embedded in a saturated porous media. The results depend on the power law exponent and the ratio of the Rayleigh to Péclet numbers. It is shown, under certain circumstance, that the problem has an infinite number of solutions.  相似文献   

2.
The three leding terms of the asymptotic expansion of the solution of the problem of convective heat transfer between a thin plate of finite length and arbitrary surface temperature and an unbounded uniform fluid flow are obtained analytically for low Péclet and Prandtl numbers.  相似文献   

3.
We derive a posteriori error estimates for subgrid viscosity stabilized finite element approximations of convection–diffusion equations in the high Péclet number regime. Two estimators are analyzed: an asymptotically robust one and a fully robust one with respect to the Péclet number. Numerical results on test cases with boundary layers or internal layers show that the asymptotically robust estimator can be used to construct adaptive meshes.  相似文献   

4.
Exact solution of the Navier-Stokes equations for the laminar flow of a viscous incompressible fluid between two coaxial rotating porous cylinders, kept at constant temperatures, has been studied. The rate of injection at one cylinder is taken to be the same as the rate of suction at the other. Expressions for the velocity and temperature distributions and for the torque required to turn the outer cylinder are obtained. The effects of λ (injection parameter), σ (the ratio of the radii of the cylinders) and Pé (Péclet number = λPr) on them are shown graphically.  相似文献   

5.
We compare different solutions of the convection–diffusion–reaction problem with Danckwerts boundary conditions. Analytical solution is found, and method of lines and Crank–Nicholson method are described, applied, and compared for different values of Péclet and Damköhler numbers. The eigenvalues and eigenfunctions have been obtained for all the possible values of the dimensionless parameters. And the analytical expression of the concentration has been calculated with the optimum number of terms in the Fourier expansion.  相似文献   

6.
In this paper we consider the diffusion-controlled (small Péclet number) growth of an isolated, oblate-spheroidal (disk-shaped) bubble of constant eccentricity (aspect ratio) in a medium that actively produces the volatile substance via a distributed source, but does not itself offer significant resistance to growth. Oblate spheroidal bubbles are predicted to grow faster than spherical ones, due to the higher surface area to volume ratio; yet, bubbles of all eccentricities grow proportionally to the square root of time, as expected for a diffusive process. In the presence of a distributed source, however, the growth time becomes dependent on the square-root of the source strength, in the limit as the boundary forcing, i.e., the degree of super-saturation, becomes negligible. Furthermore, we demonstrate that the previously known spherical solution is contained within the more general spheroidal solution. In addition, we produced new expression to describe the growth of a disk in terms of the evolution of the radius of a volume-equivalent sphere and another simple expression relating the growth time of a disk to that of a sphere.  相似文献   

7.
Cell-centered discretization of the convection-diffusion equation with large Péclet number Pe is analyzed, in the presence of a parabolic boundary layer. It is shown theoretically how, by suitable mesh refinement in the boundary layer, the accuracy can be made to be uniform in Pe, at the cost of a IogPe increase of the number of grid cells, in the case of upwind discretization. Numerical experiments are presented indicating that this can in practice also be achieved with a Pe-independent number of grid cells, both with upwind and central discretization, and with vertex-centered discretization. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
In this paper we define and analyze a semi-circulant preconditioner for the convection-diffusion equation. We derive analytical formulas for the eigenvalues and the eigenvectors of the preconditioned system of equations. We show that for mesh Péclet numbers less than 2, the rate of convergence depends only on the mesh Péclet number and the direction of the convective field and not on the spatial grid ratio or the number of unknowns. Received February 20, 1997 / Revised version received November 19, 1997  相似文献   

9.
It is well known that discrete solutions to the convection-diffusion equation contain nonphysical oscillations when boundary layers are present but not resolved by the discretisation. However, except for one-dimensional problems, there is little analysis of this phenomenon. In this paper, we present an analysis of the two-dimensional problem with constant flow aligned with the grid, based on a Fourier decomposition of the discrete solution. For Galerkin bilinear finite element discretisations, we derive closed form expressions for the Fourier coefficients, showing them to be weighted sums of certain functions which are oscillatory when the mesh Péclet number is large. The oscillatory functions are determined as solutions to a set of three-term recurrences, and the weights are determined by the boundary conditions. These expressions are then used to characterise the oscillations of the discrete solution in terms of the mesh Péclet number and boundary conditions of the problem.

  相似文献   


10.
In this article, a new stabilized finite element method is proposed and analyzed for advection‐diffusion‐reaction equations. The key feature is that both the mesh‐dependent Péclet number and the mesh‐dependent Damköhler number are reasonably incorporated into the newly designed stabilization parameter. The error estimates are established, where, up to the regularity‐norm of the exact solution, the explicit‐dependence of the diffusivity, advection, reaction, and mesh size (or the dependence of the mesh‐dependent Péclet number and the mesh‐dependent Damköhler number) is revealed. Such dependence in the error bounds provides a mathematical justification on the effectiveness of the proposed method for any values of diffusivity, advection, dissipative reaction, and mesh size. Numerical results are presented to illustrate the performance of the method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 616–645, 2016  相似文献   

11.
Fractional shear stress and Cattaneo heat flux models are introduced in characterizing unsteady Marangoni convection heat transfer of viscoelastic Maxwell fluid over a flat surface. Governing equations and boundary condition are formulated firstly via the balance between the surface tension and shear stress. Numerical solutions are obtained by new developed numerical technique and some novel phenomena are found. Results shown that the fractional derivative parameters, Marangoni number and power law exponent have significant influence on characteristics velocity and temperature fields. As fractional derivative parameters increase, the temperature profiles rise remarkably and the viscoelastic effects of the fluid enhance with delayed response to surface tension, however the temperature profiles decline significantly with a thinner thickness of thermal boundary layer with the increase of Marangoni number. The average skin friction coefficient increases with the augment of Marangoni number, while the average Nusselt number decreases for larger values of power law exponent.  相似文献   

12.
We study the dynamical properties of a two-dimensional ensemble of self-propelled dumbbells with only repulsive interactions. After summarizing the behavior of the translational and rotational mean-square displacements in the homogeneous phase that we established in a previous study, we analyze their fluctuations. We study the dependence of the probability distribution functions in terms of the Péclet number, describing the relative role of active forces and thermal fluctuations, and of particle density.  相似文献   

13.
In this present article an analysis is carried out to study the boundary layer flow behavior and heat transfer characteristics in Walter’s liquid B fluid flow. The stretching sheet is assumed to be impermeable, the effects of viscous dissipation, non-uniform heat source/sink in the presence and in the absence of elastic deformation (which was escaped from attention of researchers while formulating the viscoelastic boundary layer flow problems)on heat transfer are addressed. The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. Analytical solutions are obtained for the resulting boundary value problems. The effects of viscous dissipation, Prandtl number, Eckert number and non-uniform heat source/sink on heat transfer (in the presence and in the absence of elastic deformation) are shown in several plots and discussed. Analytical expressions for the wall frictional drag coefficient, non-dimensional wall temperature gradient and non-dimensional wall temperature are obtained and are tabulated for various values of the governing parameters. The present study reveals that, the presence of work done by deformation in the energy equation yields an augment in the fluid’s temperature.  相似文献   

14.
We consider the full Navier–Stokes–Fourier system in the singular regime of small Mach and large Reynolds and Péclet numbers, with ill prepared initial data on an unbounded domain \(\Omega \subset R^3\) with a compact boundary. We perform the singular limit in the framework of weak solutions and identify the Euler–Boussinesq system as the target problem.  相似文献   

15.
We study the solutions of the second Painlevé equation (P II) in the space of initial conditions first constructed by Okamoto, in the limit as the independent variable, x, goes to infinity. Simultaneously, we study solutions of the related equation known as the thirty-fourth Painlevé equation (P 34). By considering degenerate cases of the autonomous flow, we recover the known special solutions, which are either rational functions or expressible in terms of Airy functions. We show that the solutions that do not vanish at infinity possess an infinite number of poles. An essential element of our construction is the proof that the union of exceptional lines is a repeller for the dynamics in Okamoto’s space. Moreover, we show that the limit set of the solutions exists and is compact and connected.  相似文献   

16.
A two-scaling approach is used to investigate the onset of convection in a fluid layer whose depth is a slowly increasing function of horizontal distance. It is shown that whatever the value of the imposed temperature difference between the boundaries (provided, of course, that the lower one is hotter) there are regions which are stable and regions which are unstable to small perturbations. As the depth increases the amplitude of steady solutions increases from exponentially small values to take on the familiar square-root behavior of weakly nonlinear solutions. The solution in this narrow transition region is described in terms of the second Painlevé transcendent. In the exceptional case when the perturbation takes the form of longitudinal rolls, this equation needs some modification in that the second derivative is replaced by the fourth. The flow in a horizontal layer when the temperature difference between the boundaries increases slowly may be treated in exactly the same way. The necessary modifications to theory and results are given in an Appendix.  相似文献   

17.
In this paper we study the homogeneous relativistic heat equation (HRHE) obtained as asymptotic limit of the so-called relativistic heat equation (RHE) when the kinematic viscosity ν → ∞. These equations were introduced in the theory of radiation hydrodynamics to guarantee a bounded speed of propagation of radiating energy. We shall prove that this is indeed true, and we shall construct some explicit solutions of the HRHE exhibiting fronts propagating at light speed.  相似文献   

18.
The paper is devoted to the longitudinal dispersion of a soluble substance released in a steady laminar flow through a slit channel with heterogeneous reaction at the outer wall. The reactive transport happens in the presence of a dominant Péclet number and order one Damköhler number. In particular, these Péclet numbers correspond to Taylor’s dispersion regime. An effective model for the enhanced diffusion in this context was derived recently. It contains memory effects and contributions to the effective diffusion and effective advection velocity, due to the flow and chemistry reaction regime. In the present paper, we show through numerical simulations the efficiency of this new model. In particular, using Taylor’s ‘historical’ parameters, we illustrate that our derived contributions are important and that using them is necessary in order to simulate correctly the reactive flows. We emphasize three main points. First, we show how the effective diffusion is enhanced by chemical effects at dispersive times. Second, our model captures an intermediate regime where the diffusion is anomalous and the distribution is asymmetric. Third, we show how the chemical effects also slow down the average speed of the front.  相似文献   

19.
Analogues of the Pólya–Szégö inequality with variable exponent in the integrand are considered. Necessary and sufficient conditions for the fulfillment of these inequalities are obtained.  相似文献   

20.
In this paper we consider a double fronts free boundary problem for a parabolic equation with a non-local source and absorption. The long time behaviors of the solutions are given and the properties of the free boundaries are discussed. Our results show that if the initial value is sufficiently large, then the solution blows up in finite time, while the global fast solution exists for sufficiently small initial data, and the intermediate case with suitably large initial data gives the existence of the global slow solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号