首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent developments in the field of stochastic mechanics and particularly regarding the stochastic finite element method allow to model uncertain behaviours for more complex engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool because it helps to avoid thousands of time-consuming finite element model simulations for structures with uncertain parameters. The aim of this paper is to review and compare available techniques for both the construction of polynomial chaos and its use in computing failure probability. In particular, we compare results for the stochastic Galerkin method, stochastic collocation, and the regression method based on Latin hypercube sampling with predictions obtained by crude Monte Carlo sampling. As an illustrative engineering example, we consider a simple frame structure with uncertain parameters in loading and geometry with prescribed distributions defined by realistic histograms.  相似文献   

2.
Once subsurface water supplies become contaminated, designing cost-effective and reliable remediation schemes becomes a difficult task. The combination of finite element simulation of groundwater contaminant transport with nonlinear optimization is one approach to determine the best well selection and optimal fluid withdrawal and injection rates to contain and remove the contaminated water. Both deterministic and stochastic programming problems have been formulated and solved. These tend to be large scale problems, owing to the simulation component which serves as a portion of the constraint set. The overall problem of combined groundwater process simulation and nonlinear optimization is discussed along with example problems. Because the contaminant transport simulation models give highly uncertain results, quantifying their uncertainty and incorporating reliability into the remediation design results in a class of large stochastic nonlinear problems. The reliability problem is beginning to be addressed, and some strategies and formulations involving chance constraints and Monte Carlo methods are presented.  相似文献   

3.
The accumulation of material degradation under contact with aggressive aqueous environments could lead to reduced structural reliability. In terms of hydrated cementitious materials, such interactions often result in the chemo-physical-mechanical (CPM) degradation, which represents a multiphysics process of high non-linearity and complexity. By further considering the inevitable uncertainties associated with both the materials and the serving conditions, solving such a process requires novel probabilistic approaches. This paper presents a stochastic chemo-physical-mechanical (SCPM) degradation analysis on the hydrated cement under acidic environment. The SCPM analysis consists of modelling the stochastic chemophysical degradation by finite element method, and assessing the mechanical deterioration through analytical micromechanics. The proposed modelling framework couples the conventional Monte Carlo Simulation with a novel support vector regression algorithm. The present method is able to not only address the detailed degradation mechanisms, but also ensure low computational costs for an accurate SCPM degradation assessment.  相似文献   

4.
We apply the Monte Carlo, stochastic Galerkin, and stochastic collocation methods to solving the drift-diffusion equations coupled with the Poisson equation arising in semiconductor devices with random rough surfaces. Instead of dividing the rough surface into slices, we use stochastic mapping to transform the original deterministic equations in a random domain into stochastic equations in the corresponding deterministic domain. A finite element discretization with the help of AFEPack is applied to the physical space, and the equations obtained are solved by the approximate Newton iterative method. Comparison of the three stochastic methods through numerical experiment on different PN junctions are given. The numerical results show that, for such a complicated nonlinear problem, the stochastic Galerkin method has no obvious advantages on efficiency except accuracy over the other two methods, and the stochastic collocation method combines the accuracy of the stochastic Galerkin method and the easy implementation of the Monte Carlo method.  相似文献   

5.
Christian Bucher 《PAMM》2015,15(1):549-550
Monte Carlo methods are most versatile regarding applications to the reliability analysis of high-dimensional nonlinear structural systems. In addition to its versatility, the computational efficacy of Monte Carlo method is not adversely affected by the dimensionality of the problem. Crude Monte Carlo techniques, however, are very inefficient for extremely small failure probabilities such as typically required for sensitive structural systems. Therefore methods to increase the efficacy for small failure probability while keeping the adverse influence of dimensionality small are desirable. On such method is the asymptotic sampling method. Within the framework of this method, well-known asymptotic properties of the reliability index regarding the scaling of the basic variables are exploited to construct a regression model which allows to determine the reliability index for extremely small failure probabilities with high precision using a moderate number of Monte Carlo samples. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
结构可靠性分析的支持向量机方法   总被引:10,自引:0,他引:10  
针对结构可靠性分析中功能函数不能显式表达的问题,将支持向量机方法引入到结构可靠性分析中.支持向量机是一种实现了结构风险最小化原则的分类技术,它具有出色的小样本学习性能和良好的泛化性能,因此提出了两种基于支持向量机的结构可靠性分析方法.与传统的响应面法和神经网络法相比,支持向量机可靠性分析方法的显著特点是在小样本下高精度地逼近函数,并且可以避免维数灾难.算例结果也充分表明支持向量机方法可以在抽样范围内很好地逼近真实的功能函数,减少隐式功能函数分析(通常是有限元分析)的次数,具有一定的工程实用价值.  相似文献   

7.
A wavelet-based stochastic finite element method is presented for the bending analysis of thin plates. The wavelet scaling functions of spline wavelets are selected to construct the displacement interpolation functions of a rectangular thin plate element and the displacement shape functions are expressed by the spline wavelets. A new wavelet-based finite element formulation of thin plate bending is developed by using the virtual work principle. A wavelet-based stochastic finite element method that combines the proposed wavelet-based finite element method with Monte Carlo method is further formulated. With the aid of the wavelet-based stochastic finite element method, the present paper can deal with the problem of thin plate response variability resulting from the spatial variability of the material properties when it is subjected to static loads of uncertain nature. Numerical examples of thin plate bending have demonstrated that the proposed wavelet-based stochastic finite element method can achieve a high numerical accuracy and converges fast.  相似文献   

8.
This work develops computational methods for pricing American put options under a Markov-switching diffusion market model. Two methods are suggested in this paper. The first method is a stochastic approximation approach. It can handle option pricing in a finite horizon, which is particularly useful in practice and provides a systematic approach. It does not require calibration of the system parameters nor estimation of the states of the switching process. Asymptotic results of the recursive algorithms are developed. The second method is based on a selling rule for the liquidation of a stock for perpetual options. Numerical results using stochastic approximation and Monte Carlo simulation are reported. Comparisons of different methods are made. This research was supported in part by the National Science Foundation and in part by the Wayne State University Research Enhancement Program.  相似文献   

9.
A numerical method for design of beams and frames with complex topology is proposed. The method is based on extended multi-scale finite element method where beam finite elements are used on coarse scale and continuum elements on fine scale. A procedure for calculation of multi-scale base functions, up-scaling and downscaling techniques is proposed by using a modified version of window method that is used in computational homogenization. Coarse scale finite element is embedded into a frame of a material that is representing surrounding structure in a sense of mechanical properties. Results show that this method can capture displacements, shear deformations and local stress-strain gradients with significantly reduced computational time and memory comparing to full scale continuum model. Moreover, this method includes a special hybrid finite elements for precise modelling of structural joints. Hence, the proposed method has a potential application in large scale 2D and 3D structural analysis of non-standard beams and frames where spatial interaction between structural elements is important.  相似文献   

10.
The study considers the application of finite element modeling, combined with numerical solutions of governing stochastic differential equations, to analyze instrumented nonlinear moving vehicle–structure systems. The focus of the study is on achieving computational efficiency by deploying, within a single modeling framework, three substructuring schemes with different methodological moorings. The schemes considered include spatial substructuring schemes (involving free-interface coupling methods), a spatial mesh partitioning scheme for governing stochastic differential equations (involving the use of a predictor corrector method with implicit integration schemes for linear regions and explicit schemes for local nonlinear regions), and application of the Rao–Blackwellization scheme (which permits the use of Kalman's filtering for linear substructures and Monte Carlo filters for nonlinear substructures). The main effort in this work is expended on combining these schemes with provisions for interfacing of the substructures by taking into account the relative motion of the vehicle and the supporting structure. The problem is formulated with reference to an archetypal beam and multi-degrees of freedom moving oscillator with spatially localized nonlinear characteristics. The study takes into account imperfections in mathematical modeling, guide way unevenness, and measurement noise. The numerical results demonstrate notable reduction in computational effort achieved on account of introduction of the substructuring schemes.  相似文献   

11.
This article attempts to study the stochastic coupled thermo-elasticity of thick hollow cylinders subjected to thermal shock loading considering uncertainty in mechanical properties. The thermo-elastic governing equations based on Green–Naghdi theory (without energy dissipation) are stochastically solved using a hybrid numerical method (combined Galerkin finite element and Newmark finite difference methods). The mechanical properties are considered as random variables with Gaussian distribution, which are generated using Monte Carlo simulation method with various coefficients of variations (COVs). The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in detail. Also, the maximum, mean and variance of temperature, displacement and stresses are illustrated across thickness of cylinder in various times.  相似文献   

12.
本文首先对中国科学技术大学管理科研楼电力系统可靠度评估建立了线性传感器模型。由于线性传感器可靠度评估是一个#P问题,没有多项式时间的算法。所以本文运用了蒙特卡罗方法,考虑到未加改进的蒙特卡洛方法对于解决本身可靠度很高的系统时的效率非常低,本文使用了广泛应用于网络可靠性的RVR(Recursive Variance Reduction)方法,给出了可靠度的测算结果。  相似文献   

13.
板梁组合结构可靠性分析的随机边界元法   总被引:1,自引:0,他引:1  
本文用随机边界元法分析了随机荷载作用下具有随机边界条件的正交各向异性板、梁组合结构的可靠性.文中首先给出正交各向异性板、梁组合结构的边界积分方程,进而基于随机边界元法建立了随机结构可靠性分析方法和得到用于计算正交各向异性板、梁组合结构可靠性指标的公式.算例表明了本文方法的有效性.  相似文献   

14.
This paper investigates the issue of reliability assessment for engineering structures involving mixture of stochastic and non-stochastic uncertain parameters through the Finite Element Method (FEM). Non-deterministic system inputs modelled by both imprecise random and interval fields have been incorporated, so the applicability of the structural reliability analysis scheme can be further promoted to satisfy the intricate demand of modern engineering application. The concept of robust structural reliability profile for systems involving hybrid uncertainties is discussed, and then a new computational scheme, namely the unified interval stochastic reliability sampling (UISRS) approach, is proposed for assessing the safety of engineering structures. The proposed method provides a robust semi-sampling scheme for assessing the safety of engineering structures involving multiple imprecise random fields with various distribution types and interval fields simultaneously. Various aspects of structural reliability analysis with multiple imprecise random and interval fields are explored, and some theoretically instructive remarks are also reported herein.  相似文献   

15.
Kinetic Monte Carlo methods provide a powerful computational tool for the simulation of microscopic processes such as the diffusion of interacting particles on a surface, at a detailed atomistic level. However such algorithms are typically computationatly expensive and are restricted to fairly small spatiotemporal scales. One approach towards overcoming this problem was the development of coarse-grained Monte Carlo algorithms. In recent literature, these methods were shown to be capable of efficiently describing much larger length scales while still incorporating information on microscopic interactions and fluctuations. In this paper, a coarse-grained Langevin system of stochastic differential equations as approximations of diffusion of interacting particles is derived, based on these earlier coarse-grained models. The authors demonstrate the asymptotic equivalence of transient and long time behavior of the Langevin approximation and the underlying microscopic process, using asymptotics methods such as large deviations for interacting particles systems, and furthermore, present corresponding numerical simulations, comparing statistical quantities like mean paths, auto correlations and power spectra of the microscopic and the approximating Langevin processes. Finally, it is shown that the Langevin approximations presented here are much more computationally efficient than conventional Kinetic Monte Carlo methods, since in addition to the reduction in the number of spatial degrees of freedom in coarse-grained Monte Carlo methods, the Langevin system of stochastic differential equations allows for multiple particle moves in a single timestep.  相似文献   

16.
In this paper we discuss the development of a parallel software for the numerical simulation of Participating Life Insurance Policies in distributed environments. The main computational kernels in the mathematical models for the solution of the problem are multidimensional integrals and stochastic differential equations. The former is solved by means of Monte Carlo method combined with the Antithetic Variates variance reduction technique, while differential equations are approximated via a fully implicit, positivity-preserving, Euler method. The parallelization strategy we adopted relies on the parallelization of Monte Carlo algorithm. We implemented and tested the software on a PC Linux cluster.  相似文献   

17.
《Optimization》2012,61(5):681-694
As global or combinatorial optimization problems are not effectively tractable by means of deterministic techniques, Monte Carlo methods are used in practice for obtaining ”good“ approximations to the optimum. In order to test the accuracy achieved after a sample of finite size, the Bayesian nonparametric approach is proposed as a suitable context, and the theoretical as well as computational implications of prior distributions in the class of neutral to the right distributions are examined. The feasibility of the approach relatively to particular Monte Carlo procedures is finally illustrated both for the global optimization problem and the {0 - 1} programming problem.  相似文献   

18.
Monte Carlo method via a numerical algorithm to solve a parabolic problem   总被引:1,自引:0,他引:1  
This paper is intended to provide a numerical algorithm consisted of the combined use of the finite difference method and Monte Carlo method to solve a one-dimensional parabolic partial differential equation. The numerical algorithm is based on the discretize governing equations by finite difference method. Due to the application of the finite difference method, a large sparse system of linear algebraic equations is obtained. An approach of Monte Carlo method is employed to solve the linear system. Numerical tests are performed in order to show the efficiency and accuracy of the present work.  相似文献   

19.
The present study deals with support vector regression-based metamodeling approach for efficient seismic reliability analysis of structure. Various metamodeling approaches e.g. response surface method, Kriging interpolation, artificial neural network, etc. are usually adopted to overcome computational challenge of simulation based seismic reliability analysis. However, the approximation capability of such empirical risk minimization principal-based metamodeling approach is largely affected by number of training samples. The support vector regression based on the principle of structural risk minimization has revealed improved response approximation ability using small sample learning. The approach is explored here for improved estimate of seismic reliability of structure in the framework of Monte Carlo Simulation technique. The parameters necessary to construct the metamodel are obtained by a simple effective search algorithm by solving an optimization sub-problem to minimize the mean square error obtained by cross-validation method. The simulation technique is readily applied by random selection of metamodel to implicitly consider record to record variations of earthquake. Without additional computational burden, the approach avoids a prior distribution assumption about approximated structural response unlike commonly used dual response surface method. The effectiveness of the proposed approach compared to the usual polynomial response surface and neural network based metamodels is numerically demonstrated.  相似文献   

20.
In this paper, one can propose a method which takes into account the propagation of uncertainties in the finite element models in a multi-objective optimization procedure. This method is based on the coupling of stochastic response surface method (SRSM) and a genetic algorithm provided with a new robustness criterion. The SRSM is based on the use of stochastic finite element method (SFEM) via the use of the polynomial chaos expansion (PC). Thus, one can avoid the use of Monte Carlo simulation (MCS) whose costs become prohibitive in the optimization problems, especially when the finite element models are large and have a considerable number of design parameters.The objective of this study is on one hand to quantify efficiently the effects of these uncertainties on the responses variability or the cost functions which one wishes to optimize and on the other hand, to calculate solutions which are both optimal and robust with respect to the uncertainties of design parameters.In order to study the propagation of input uncertainties on the mechanical structure responses and the robust multi-objective optimization with respect to these uncertainty, two numerical examples were simulated. The results which relate to the quantification of the uncertainty effects on the responses variability were compared with those obtained by the reference method (REF) using MCS and with those of the deterministic response surfaces methodology (RSM).In the same way, the robust multi-objective optimization results resulting from the SRSM method were compared with those obtained by the direct optimization considered as reference (REF) and with RSM methodology.The SRSM method application to the response variability study and the robust multi-objective optimization gave convincing results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号