首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper aims to study the stability for primary frequency regulation of hydro-turbine governing system with surge tank. Firstly, a novel nonlinear mathematical model of hydro-turbine governing system considering the nonlinear characteristic of penstock head loss is introduced. The nonlinear state equations under opening control mode and power control mode are derived. Then, the nonlinear dynamic performance of nonlinear hydro-turbine governing system is investigated based on the stable domain for primary frequency regulation. New feature of the nonlinear hydro-turbine governing system caused by the nonlinear characteristic of penstock head loss is described by comparing with a linear model, and the effect mechanism of nonlinear characteristic of penstock head loss is revealed. Finally, the concept of critical stable sectional area of surge tank for primary frequency regulation is proposed and the analytical solution is derived. The combined tuning and optimization method of governor parameters and sectional area of surge tank is proposed. The results indicate that for the primary frequency regulation under opening control mode and power control mode, the nonlinear hydro-turbine governing system is absolutely stable and conditionally stable, respectively. The stability of the nonlinear hydro-turbine governing system and linear hydro-turbine governing system is the same under opening control model and different under power control model. The nonlinear characteristic of penstock head loss mainly affects the initial stage of dynamic response process of power output, and then changes the stability of the nonlinear system. The critical stable sectional area of surge tank makes the system reach critical stable state. The governor parameters and critical stable sectional area of surge tank jointly determine the distributions of stability states.  相似文献   

2.
3.
A general series-type theoretical formulation based on the linearized potential theory, the method of separation of variables, and the translational addition theorem for cylindrical Bessel functions is developed to study three-dimensional natural sloshing in a partially filled horizontally-mounted circular cylindrical tank of finite span. Assuming time-harmonic variations, the potential solutions associated with the Symmetric/Antisymmetric (S/A) modes of free liquid surface oscillations are first analytically expanded as series of bounded spatial functions with unknown modal coefficients. The impenetrability conditions of the rigid end-plates along with the free surface dynamic/kinematic boundary condition are then imposed. The zero-normal-velocity requirement of the lateral tank boundary is subsequently applied by innovative use of Graf's translational addition theorem for modified cylindrical Bessel functions. After truncation, four independent sets of homogeneous algebraic equations are obtained that are then numerically worked out for the natural sloshing eigen-frequencies and free surface oscillation mode shapes. Extensive numerical data include the first thirty six longitudinal/transverse Antisymmetric/Symmetric (AA, SA, AS, SS) dimensionless sloshing frequencies, for a wide range of liquid fill depths and container span to radius ratios. Also, the influence of fill depth on the free surface oscillation mode shapes is addressed through selected 2D images. Comprehensive numerical simulations illustrate the strong effects of container length and liquid fill depth on the calculated sloshing frequencies. It is revealed that the frequency branches with the same transverse mode number form a cluster that progressively merge together amid the tank fill-depth limits as the tank span ratio increases. On the other hand, when the tank length substantially decreases, the number of “frequency cross-overs” between various frequency clusters at certain liquid fill depths considerably increases. Moreover, primary advantages of proposed methodology in comparison to other approximate/numerical methods are explicitly pointed out, convergence of solution is tested, and accuracy/reliability of the results is demonstrated by comparisons with available data.  相似文献   

4.
The deterministic approach to the construction of mathematical models for solving the problem of load fluctuation in hydro-electric power plants has been the subject of considerable investigation. Means of mitigating adverse effects, by use of surge tanks or otherwise, has received equal attention.In fact, the load demand on an electric power plant is never regular, consequently load variation may be subject to random effects. The present work concerns a probabilistic model of the random problem, whose solution gives the distribution and probability density functions of the variables involved, namely the pressures, velocities and surge tank oscillation. Order statistical methods were also used to estimate the probability of occurence of extreme head fluctuations.  相似文献   

5.
In this article, a new methodology based on fuzzy proportional‐integral‐derivative (PID) controller is proposed to damp low frequency oscillation in multimachine power system where the parameters of proposed controller are optimized offline automatically by hybrid genetic algorithm (GA) and particle swarm optimization (PSO) techniques. This newly proposed method is more efficient because it cope with oscillations and different operating points. In this strategy, the controller is tuned online from the knowledge base and fuzzy interference. In the proposed method, for achieving the desired level of robust performance exact tuning of rule base and membership functions (MF) are very important. The motivation for using the GA and PSO as a hybrid method are to reduce fuzzy effort and take large parametric uncertainties in to account. This newly developed control strategy mixed the advantage of GA and PSO techniques to optimally tune the rule base and MF parameters of fuzzy controller that leads to a flexible controller with simple structure while is easy to implement. The proposed method is tested on three machine nine buses and 16 machine power systems with different operating conditions in present of disturbance and nonlinearity. The effectiveness of proposed controller is compared with robust PSS that tune using PSO and the fuzzy controller which is optimized rule base by GA through figure of demerit and integral of the time multiplied absolute value of the error performance indices. The results evaluation shows that the proposed method achieves good robust performance for a wide range of load change in the presents of disturbance and system nonlinearities and is superior to the other controllers. © 2014 Wiley Periodicals, Inc. Complexity 21: 78–93, 2015  相似文献   

6.
The perturbed motion of a rocket as an elastic thin-walled structure with compartments partially filled with liquid propellant is considered. It is assumed that the normal modes of the hydroelastic oscillations of the rocket are determined under the condition that the velocity potential on the free surface of the liquid is equal to zero and with standard remaining conditions. Certain features of these modes with zero fundamental frequencies are pointed out and the “loss” of mass effect associated with this is explained. Equations are derived for the perturbed motion of a rocket taking account of the hydroelastic oscillations of its structure and the oscillations of the liquid with deviations of the free surface from the equilibrium position under the action of mass forces. The coefficients of these equations, characterizing the relation between the different type of oscillations, are expressed in terms of known hydrodynamic parameters and the values of the oscillation modes at certain points.  相似文献   

7.
Desulfurization systems in coal-fired power stations often suffer the problem of high operating costs caused by a rule-of-thumb control strategy, which implies great potential for optimization of the operation. Due to the complex desulfurization mechanism, frequently fluctuating unit load, and severe disturbance, it is challenging to determine the optimal operating parameters based on the traditional mechanistic models, and the operating parameters are closely related to the operational efficiency of the flue gas desulfurization system. In this paper, an operation strategy optimization method for the desulfurization process is proposed based on a data mining framework, which is able to determine online the optimal operating parameter settings from a large amount of historical data. First, Principal Component Analysis (PCA) is used to reduce data redundancy by mapping the data into a new vector space. Based on the new vector space, an enhanced fuzzy C-means clustering (Enhanced-FCM) is developed to cluster the historical data into groups sharing similar characteristics. Taking sulfur dioxide emission concentration as a constraint condition, the system is optimized with economic benefits and desulfurization efficiency as the objective function. When performing optimization, the group that current operating conditions belong to is determined first, then the operating parameters of the best performance are searched within the group and provided as the optimization results. The method is validated and tested based on the data from a wet flue gas desulfurization (WFGD) system of a 1000 MWe supercritical coal-fired power plant in China. The results indicate that the proposed operation strategy can appropriately obtain operating parameter settings at different conditions, and effectively reduce the desulfurization cost under the constraint of meeting emission requirements.  相似文献   

8.
Modelling of the motion of a helicopter with a suspended load is described. The mathematical model takes into account stochastic disturbances acting on the load suspension point. The proposed approach allows solution of the problem of optimal control with minimization of oscillation and control power expenditure. The evolution of the system solution with time is investigated for various disturbance intensities. Computer calculation results are presented as a function of the suspension length and the intensity of stochastic disturbances.  相似文献   

9.
We consider the problem of optimal boundary control by the displacement at left endpoint of a string in the case of a nonlocal oddness boundary condition of the first kind. We obtain a necessary and sufficient condition for the problem controllability under arbitrary initial and terminal conditions and construct a closed analytical form of the control itself under these conditions. In addition, we consider the problem of optimal boundary control by the displacement at one endpoint of the string for a given displacement mode at the other endpoint.  相似文献   

10.
In the present note we have studied the harmonic and anharmonic oscillations of cylindrical plasma using Lagrangian formalism. In order to study the harmonic oscillations, the equations are linearized and the resulting equation for the displacement has been numerically solved. For situations present in thermonuclear reactors, the presence of axial magnetic field is found necessary to make the periods of oscillation to become comparable with the time required for the thermonuclear reactions to set in. A detailed analysis of the anharmonic oscillations reveals that the significant interaction is between the first and the second mode. The fundamental period of anharmonic oscillation is more than the corresponding period of harmonic oscillations by 9·2%. Graphs have been drawn for the amplitudes of relative variations in density and magnetic field and of the time-varying part of anharmonic oscillation.  相似文献   

11.
The nature of the processes taking place in a nuclear power plant (NPP) steam turbine is the reason why their modeling is very difficult, especially when the model is intended to be used for on-line optimal model based process control over a wide range of operating conditions, caused by changing electrical power demand e.g. when combined heat and power mode of work is utilized. The paper presents three nonlinear models of NPP steam turbine, which are: the static model, and two dynamic versions, detailed and simplified. As the input variables, the models use the valve opening degree and the steam flow properties: mass flow rate, pressure and temperature. The models enable to get access to many internal variables describing process within the turbine. They can be treated as the output or state variables. In order to verify and validate the models, data from the WWER-440/213 reactor and the 4 CK 465 turbine were utilized as the benchmark. The performed simulations have shown good accordance of the static and dynamic models with the benchmark data in steady state conditions. The dynamic models also demonstrated good behavior in transient conditions. The models were analyzed in terms of computational load and accuracy over a wide range of varying inputs and for different numerical calculation parameters, especially time step values. It was found that the detailed dynamic model, due to its complexity and the resultant long calculation time, is not applicable in advanced control methods, e.g. model predictive control. However, the introduced simplifications significantly decreased the computational load, which enables to use the simplified model for on-line control.  相似文献   

12.
A honeybee mating optimization technique is used to tune the power system stabilizer (PSS) parameters and find optimal location of PSSs in this article. The PSS parameters and placement are computed to assure maximum damping performance under different operating conditions. One of the main advantages of the proposed approach is its robustness to the initial parameter settings. The effectiveness of the proposed method is demonstrated on two case studies as; 10‐machine 39‐buses New England (NE) power system in comparison with Tabu Search (TS) and 16 machines and 68 buses‐modified reduced order model of the NE New York interconnected system by genetic algorithm through some performance indices under different operating condition. The proposed method of tuning the PSS is an attractive alternative to conventional fixed gain stabilizer design as it retains the simplicity of the conventional PSS and at the same time guarantees a robust acceptable performance over a wide range of operating and system condition. © 2014 Wiley Periodicals, Inc. Complexity 21: 242–258, 2015  相似文献   

13.
研究一类脉冲向量时滞抛物型偏微分方程的振动性,借助Domslak引进的H-振动的概念及内积降维的方法,将多维振动问题化为一维脉冲时滞微分不等式不存在最终正解的问题,建立了该类方程在Robin边值条件下所有解H-振动的若干充分条件,这里H是RM中的单位向量.  相似文献   

14.
This article is concerned with the preservation of oscillations for differential equations with piecewise constant arguments of advanced type. By using the Runge-Kutta method, new oscillation conditions for numerical solution are established. We prove that oscillations of the analytic solution are preserved by the numerical solution in the Runge-Kutta method under some conditions. Some experiments are given.  相似文献   

15.
The local length-dependence of the natural frequencies and forms of plane transverse oscillations of a thin inhomogeneous rod in an elastic medium with a variable stiffness and arbitrary elastic-fastening boundary conditions is investigated. It is established that the presence of an external elastic medium, described by the Winkler model, can lead to an anomalous effect – an increase in the natural frequencies of lower oscillation modes as the length of the rod increases continuously. The extremely fine properties of this change as a function of the length, the mode number and the method of fastening are revealed. The oscillations in the case of standard methods of fastening are investigated separately. Simple examples, which illustrate the anomalous dependence of the natural oscillation frequencies of the rod in an extremely inhomogeneous elastic medium with different boundary conditions are calculated.  相似文献   

16.
基于von Karman薄板理论,建立了均布载荷和周边面内载荷联合作用下夹层圆板非线性振动问题的控制方程和滑动固定边界条件,给出了相应静力问题的精确解及其数值结果.基于时间模态假设和变分法,得到了空间模态的控制方程,并使用修正迭代法求解该方程,得到夹层圆板幅频-载荷特征关系.讨论了两种载荷对夹层圆板振动特性的影响规律.当周边面力使夹层圆板的最低固有频率为零时,就可获得临界载荷的值.  相似文献   

17.
This paper studies the H-infinity control issue for a class of networked control systems (NCSs) with time delay and packet dropout. The state feedback closed-loop NCS is modeled as a discrete-time switched system. Through using a Lyapunov function, a sufficient condition is obtained, under which the system is exponential stability with a desired H-infinity disturbance attenuation level. The designed H-infinity controller is obtained by solving a set of linear matrix inequalities. An illustrative example is presented to demonstrate the effectiveness of the proposed method.  相似文献   

18.
挖坑机钻头主轴纵向振动系统模型的建立与控制   总被引:1,自引:0,他引:1  
首先利用弹性杆理论和H am ilton变分原理建立了挖坑机钻头主轴及钻尖在工作过程中由于外激励的作用使钻尖与土壤互相作用而产生纵向振动的动力学模型,同时给出边界条件和初始条件.其次通过把系统外激励函数当作控制变量,利用Banach空间几何性质证明了此系统存在唯一最优控制元.  相似文献   

19.
Symmetrically coupled nonlinear oscillator systems demonstrating transition to chaos via a sequence of period-doubling bifurcations under variation of the control parameter exhibit various types of mutual synchronization. For these coupled systems, with dissipatively coupled logistic maps, we consider a hierarchy of possible oscillation types using the value of the time shift between oscillations of the subsystems as a basis for the classification of multistable states. For oscillation states and their basins of attraction the ways of evolution are studied under variation of the parameters of nonlinearity and coupling. The obtained results are compared with those of physical experiment with a system of coupled, periodically driven nonlinear resonators.  相似文献   

20.
A multiple-scale technique has been employed to study nonlinear torsional oscillations in single-storey structures with cubic softening stiffness members subject to a single frequency ground excitation. The structures are studied under free oscillation conditions, primary resonance, and combination resonance. Time history analyses are employed to quantify the dynamic behaviour of a single-storey structure. The instabilities are related to the jump in response which exists in single degree-of-freedom softening oscillators subjected to harmonic excitation. It is shown that this jump can be quantified analytically, and appears as a cusp catastrophe in the bending mode. Time history analyses show that the bending mode can exhibit a limit cycle behaviour of constant amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号