首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An analytical study of elastoviscoplastic fluid flow in tubes of non-circular cross section is presented. The constitutive structure of the fluid is described by a linear frame invariant combination of the Phan-Thien−Tanner model of viscoelastic fluids and the Bingham model of plastic fluids. Non-circular tube cross sections are modeled by the shape factor method a one-to-one mapping of the circular base contour into a wide spectrum family of arbitrary tube contours. Field variables are expanded into asymptotic series in terms of the elasticity measure, the Weissenberg number We, coupled with an asymptotic expansion in terms of the geometrical mapping parameter ε leading to a set of hierarchical momentum balance equations which are solved successively up to and including the third order in We when the secondary field appears for the first time. The computational algorithm developed is applied to the study of the non-rectilinear flow in tubes with triangular and square cross sections. We find that the presence of the yield stress dampens the intensity of the purely viscoelastic vortices, the higher the yield stress the lower the intensity of the vortices in the cross-section, and the further away the vortices are from the center of the cross section as compared to the purely viscoelastic vortices. The results also evidence that viscoelasticity increases the axial flow for given viscoplastic conditions and pressure drop, and consequently increases the rate of flow, a phenomenon that may find applications in optimizing material transportation.  相似文献   

2.
The equations describing the steady flow of Cosserat–Bingham fluids are considered, and existence of weak solution is proved for the three‐dimensional boundary‐value problem with the use of the Lipschitz truncation argument. In contrast to the classical Bingham fluid, the micropolar Bingham fluid supports local micro‐rotations and two types of plug zones. Our approach is based on an approximation of the constitutive relation by a generalized Newtonian constitutive relation and a subsequent limiting process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Bingham(宾汉)模型情况下,多采用通用公式进行圆管层流压降的解析计算,即将Bingham模型本构方程代入粘性流体圆管层流流动通用公式进行计算,仅能得到压降的解析解.新方法结合Bingham流体本构方程与运动方程,建立有关力学平衡方程,并运用代数方程的根式解理论对圆管层流流动时的非线性方程进行求解,可直接求得Bingham流体圆管层流压降及速度流核区半径的解析解,进一步可求得圆管层流速度解析解;Bingham流体圆管层流速度的直接影响因素为流量、塑性粘度和屈服值,研究发现速度流核宽度与屈服值成正比,与流量及塑性粘度成反比,且流核的宽度越大,流核区的速度越小.  相似文献   

4.
The Richtmyer–Meshkov and Rayleigh–Taylor instabilities in viscoplastic (Bingham) fluids are studied in two-dimensional setting. The evolution of the Richtmyer–Meshkov instability in a Bingham fluid is analyzed as compared with its evolution in a Newtonian fluid. The critical amplitude of the initial perturbation in the velocity field is estimated. Numerical results obtained for Richtmyer–Meshkov and Rayleigh–Taylor instabilities in a Bingham fluid are presented and compared with those obtained for a Newtonian fluid.  相似文献   

5.
The paper concerns torsional buckling and the initial post-buckling of axially compressed thin-walled aluminium alloy columns with bisymmetrical cross-section. It is assumed that the column material behaviour is described by the Ramberg–Osgood constitutive equation in non-linear elastic range. The stationary total energy principle is used to derive the governing non-linear differential equation. An approximate solution of the equation determined by means of the perturbation approach allows to determine the buckling loads and the initial post-buckling behaviour. Numerical examples dealing with simply supported I-column are presented and the effect of material elastic non-linearity on the critical loads and initial post-buckling behaviour are compared to the linear solution.  相似文献   

6.
A squeeze flow of a viscoplastic fluid through a narrow clearance between two coaxial surfaces of revolution is considered. The problem is described by boundary-layer equations. With the use of the method of integral approaches, formulas for the pressure distribution are obtained. Generally, the flow of viscoplastic fluids given by the nonlinear Shulman model is considered. The flows of viscoplastic fluids given by the Herschel, Bulkley, Bingham, Ostwald-de Waele, and Newton models are discussed in detail. Numerical examples of pressure distributions in the clearance between parallel disks are presented.  相似文献   

7.
《Applied Mathematical Modelling》2014,38(11-12):2781-2790
This paper presents a nonlinear dynamic analysis of a micro-actuator made of nonlinear elasticity materials. The theoretical formulations are based on Bernoulli–Euler beam theory and include the effects of mid-plane stretching due to large deformation and material nonlinearity. By employing Linstedt–Poincaré perturbation method, the nonlinear governing equation is transformed into a set of linear differential equations which are then solved using Galerkin’s method. Numerical results show that the linear constitutive relationship used in previous studies is valid for small deformation only whereas for large deformation, the nonlinear elasticity constitutive relationship must be used for accurate analysis. The effects of initial gap and beam length on the nonlinear electro-dynamic behavior of the micro-actuator are also discussed.  相似文献   

8.
Mechanical effects have mostly been neglected so far in phase field tumour models that are based on a Cahn–Hilliard approach. In this paper we study a macroscopic mechanical model for tumour growth in which cell–cell adhesion effects are taken into account with the help of a Ginzburg–Landau type energy. In the overall model an equation of Cahn–Hilliard type is coupled to the system of linear elasticity and a reaction–diffusion equation for a nutrient concentration. The highly non-linear coupling between a fourth-order Cahn–Hilliard equation and the quasi-static elasticity system lead to new challenges which cannot be dealt within a gradient flow setting which was the method of choice for other elastic Cahn–Hilliard systems. We show existence, uniqueness and regularity results. In addition, several continuous dependence results with respect to different topologies are shown. Some of these results give uniqueness for weak solutions and other results will be helpful for optimal control problems.  相似文献   

9.
This study analyses the pulsatile flow of blood through mild stenosed narrow arteries, treating the blood in the core region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is employed to solve the resulting coupled implicit system of non-linear partial differential equations. The expressions for shear stress, velocity, wall shear stress, plug core radius, flow rate and longitudinal impedance to flow are obtained. The effects of pulsatility, stenosis depth, peripheral layer thickness, body acceleration and non-Newtonian behavior of blood on these flow quantities are discussed. It is noted that the plug core radius, wall shear stress and longitudinal impedance to flow increase as the yield stress and stenosis depth increase and they decrease with the increase of the body acceleration, pressure gradient, width of the peripheral layer thickness. It is observed that the plug flow velocity and flow rate increase with the increase of the pulsatile Reynolds number, body acceleration, pressure gradient and the width of the peripheral layer thickness and the reverse behavior is found when the yield stress, stenosis depth and lead angle increase. It is also recorded that the wall shear stress and longitudinal impedance to flow are considerably lower for the two-fluid Casson model than that of the single-fluid Casson model. It is found that the presence of body acceleration and peripheral layer influences the mean flow rate and mean velocity by increasing their magnitude significantly in the arteries.  相似文献   

10.
Pulsatile flow of blood through mild stenosed narrow arteries is analyzed by treating the blood in the core region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is used to solve the coupled implicit system of non-linear differential equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance to flow are obtained. The effects of pulsatility, stenosis, peripheral layer and non-Newtonian behavior of blood on these flow quantities are discussed. It is found that the pressure drop, plug core radius, wall shear stress and resistance to flow increase with the increase of the yield stress or stenosis size while all other parameters held constant. The percentage of increase in the resistance to flow over the uniform diameter tube is considerably very low for the present two-fluid model compared with those of the single-fluid model.  相似文献   

11.
In the setting of finite elasticity we study the asymptotic behaviour of a crack that propagates quasi-statically in a brittle material. With a natural scaling of size and boundary conditions we prove that for large domains the evolution with finite elasticity converges to the evolution with linearized elasticity. In the proof the crucial step is the (locally uniform) convergence of the non-linear to the linear energy release rate, which follows from the combination of several ingredients: the \(\Gamma \) -convergence of re-scaled energies, the strong convergence of minimizers, the Euler–Lagrange equation for non-linear elasticity and the volume integral representation of the energy release.  相似文献   

12.
The constitutive equation for a transversely isotropic incompressible hyperelastic material is written in a covariant form for arbitrary orientation of the anisotropic director. Three non-linear differential equations are derived for radial oscillations in radial, tangential and longitudinal transversely isotropic thin-walled cylindrical tubes of generalised Mooney-Rivlin material. A Lie point symmetry analysis is performed. The conditions on the strain-energy function and on the net applied surface pressure for Lie point symmetries to exist are determined. For radial and tangential transversely isotropic tubes the differential equations are reduced to Abel equations of the second kind. Radial oscillations in a longitudinal transversely isotropic tube and in an isotropic tube are described by the Ermakov-Pinney equation.  相似文献   

13.
直圆管突扩通道内宾汉流体湍流流场的数值研究   总被引:1,自引:1,他引:0  
本文依据牛顿流体中建立的标准k_ε湍流模型这一基本思想,考虑宾汉流体的本构方程,建立了适用于求解宾汉流体湍流流动的控制方程·采用压力修正算法,实现了宾汉流体速度场与压力场的关联·在理论研究基础上,对直圆管突扩通道内宾汉流体湍流流动进行了数值研究,并探讨了直圆管突扩通道内宾汉流体湍流流动机理·  相似文献   

14.
本文对两种情况导出了描述粘塑性流体在旋转圆盘上流动的基本方程.分别用摄动方法和数值方法得到了方程的解.这就有可能去计算薄膜的厚度分布.经计算发现有两种类型的厚度分布.对于粘度和屈服应力都与径向坐标r无关的粘塑性流体,厚度h随r的增加而减小.对于粘度和屈服应力都是时间和r的函数的Bingham流体,厚度hr的增加而增加.  相似文献   

15.
The Bingham fluid model represents viscoplastic materials that display yielding, that is, behave as a solid body at low stresses, but flow as a Newtonian fluid at high stresses. In any Bingham flow, there may be regions of solid material separated from regions of Newtonian flow by so-called yield boundaries. Such materials arise in a range of industrial applications. Here, we consider the helical flow of a Bingham fluid between infinitely long coaxial cylinders, where the flow arises from the imposition of a steady rotation of the inner cylinder (annular Coutte flow) on a steady axial pressure driven flow (Poiseuille flow), where the ratio of the rotational flow compared to the axial flow is small. We apply a perturbation procedure to obtain approximate analytic expressions for the fluid velocity field and such related quantities as the stress and viscosity profiles in the flow. In particular, we examine the location of yield boundaries in the flow and how these vary with the rotation speed of the inner cylinder and other flow parameters. These analytic results are shown to agree very well with the results of numerical computations.  相似文献   

16.
The long-wave perturbation method is employed to investigate the weakly nonlinear hydrodynamic stability of a thin Bingham liquid film flowing down a vertical wall. The normal mode approach is first used to compute the linear stability solution for the film flow. The method of multiple scales is then used to obtain the weak nonlinear dynamics of the film flow for stability analysis. It is shown that the necessary condition for the existence of such a solution is governed by the Ginzburg–Landau equation. The modeling results indicate that both the subcritical instability and supercritical stability conditions can possibly occur in a Bingham liquid film flow system. For the film flow in stable states, the larger the value of the yield stress, the higher the stability of the liquid film. However, the flow becomes somewhat unstable in unstable states as the value of the yield stress increases.  相似文献   

17.
We examine a mathematical model that describes a quasistatic adhesive contact between a viscoplastic body and deformable foundation. The material’s behaviour is described by the rate-type constitutive law which involves functions with a non-polynomial growth. The contact is modelled by the normal compliance condition with limited penetration and adhesion, a subdifferential friction condition also depending on adhesion, and the evolution of bonding field is governed by an ordinary differential equation. We present the variational formulation of this problem which is a system of an almost history-dependent variational–hemivariational inequality for the displacement field and an ordinary differential equation for the bonding field. The results on existence and uniqueness of solution to an abstract almost history-dependent inclusion and variational–hemivariational inequality in the reflexive Orlicz–Sobolev space are proved and applied to the adhesive contact problem.  相似文献   

18.
Optimal control problems of mixed variational inequalities of the second kind arising in flow of Bingham viscoplastic materials are considered. Two type of active-inactive set regularizing functions for the control problems are proposed and approximation properties and optimality conditions are investigated. A detailed first order optimality system for the control problem is obtained as limit of the regularized optimality conditions. For the solution of each regularized system a globalized semismooth Newton algorithm is constructed and its computational performance is investigated.  相似文献   

19.
For a consequent lightweight design the consideration of the nonlinear macroscopic material behaviour of composites, which is amongst others driven by damage and strain–rate effects on the mesoscale, is required. Therefore, the modelling approach using numerical homogenization techniques based on the simulation of representative volume elements which are modelled by the extended finite element method (X–FEM) is currently extended to nonlinear material behaviour. While the glass fibres are assumed to remain linear elastic, a viscoplastic constitutive law accounts for strain–rate dependence and inelastic deformation of the matrix material. This paper describes the process of finding suitable constitutive relations for the polymeric matrix material Polypropylene in the small–strain regime. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
本文介绍二维分岔槽道内非牛顿流体流动的有限元分析.采用Galerkin法及混合有限元法,流体看作不可压缩的非牛顿流体,满足Oldyord微分型本构方程.由有限元法形成的非线性代数方程组用连续微分法求解.结果表明有限元法适于分析复杂流场中非牛顿流体的流动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号