首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zusammenfassung Eine visko-elastische Flüssigkeit fliesst durch ein zylindrisches Rohr von nichtkreisförmigem Querschnitt. Die Theorie zweiter Ordnung der visko-elastischen Flüssigkeiten wird auf die Bestimmung der Variation der auf die Rohrwandung ausgeübten Normalspannungen angewandt. Explizite Lösungen für elliptische, dreieckige und rechteckige Querschnitte werden angegeben.  相似文献   

2.
The existence of a generalized weak solution is proved for the nonstationary problem of motion of a rigid body in the flow of a viscous incompressible fluid filling a cylindrical pipe of arbitrary cross-section. The fluid flow conforms to the Navier–Stokes equations and tends to the Poiseuille flow at infinity. The body moves in accordance with the laws of classical mechanics under the influence of the surrounding fluid and the gravity force directed along the cylinder. Collisions of the body with the boundary of the flow domain are not admitted and, by this reason, the problem is considered until the body approaches the boundary.  相似文献   

3.
We present a method for the solution of transient flow in a multi-port fluid device with arbitrary geometry. The method is applicable to fluid devices where the fluid motion is primarily inviscid throughout the volume, but locally near a device port some accommodation to viscous flow is introduced. The internal flow is characterized by an array of purely geometrical factors between ports, essentially a set of generalized impedances; the state variables elicited are the average volume flow rates through the device ports. The method creates a set of coupled non-linear time-dependent ordinary differential equations. The solution to this set of equations is much faster, typically by orders of magnitude, than a single run of a transient CFD model. We demonstrate our method with a simple example; we show that the results of the method agree well with a full CFD calculation.  相似文献   

4.
This article establishes the existence of a trapped-mode solution to a linearized water-wave problem. The fluid occupies a symmetric horizontal channel that is uniform everywhere apart from a confined region which either contains a thin vertical plate spanning the depth of the channel or has indentations in the channel walls; the forces of gravity and surface tension are operative. A trapped mode corresponds to an eigenvalue of the composition of an inverse differential operator and a Neumann–Dirichlet operator for an elliptic boundary-value problem in the fluid domain. The existence of such an eigenvalue is established by extending previous results dealing with the case when surface tension is absent. © 1998 B.G. Teubner Stuttgart–John Wiley & Sons, Ltd.  相似文献   

5.
A general method to discuss the problem of an arbitrary Stokes flow (both axisymmetric and non-axisymmetric flows) of a viscous, incompressible fluid past a sphere with a thin coating of a fluid of a different viscosity is considered. We derive the expressions for the drag and torque experienced by the fluid coated sphere and also discuss the conditions for the reduction of the drag on the fluid coated sphere. In fact, we show that the drag reduces compared to the drag on a rigid sphere of the same radius when the unperturbed velocity is either harmonic or purely biharmonic, i.e., of the form ${r^2\vec{\textbf{v}}}$ , where ${\vec{\textbf{v}}}$ is a harmonic function. Previously Johnson (J Fluid Mech 110:217–238, 1981), who considered a uniform flow showed that the drag on the fluid coated sphere reduces compared to the drag on the uncoated sphere when the ratio of the surrounding fluid viscosity to the fluid-film viscosity is greater than 4. We show that this result is true when the undisturbed velocity is harmonic or purely biharmonic, uniform flow being a special case of the former. However, we illustrate by an example that the drag may increase in a general Stokes flow even if this ratio is greater than 4. Moreover, when the unperturbed velocity is harmonic or purely biharmonic, and the ratio of the surrounding fluid viscosity to the fluid-film viscosity is greater than 4 for a fixed value of the viscosity of the ambient fluid, we determine the thickness of the coating for which the drag is minimum.  相似文献   

6.
An analytical study of elastoviscoplastic fluid flow in tubes of non-circular cross section is presented. The constitutive structure of the fluid is described by a linear frame invariant combination of the Phan-Thien−Tanner model of viscoelastic fluids and the Bingham model of plastic fluids. Non-circular tube cross sections are modeled by the shape factor method a one-to-one mapping of the circular base contour into a wide spectrum family of arbitrary tube contours. Field variables are expanded into asymptotic series in terms of the elasticity measure, the Weissenberg number We, coupled with an asymptotic expansion in terms of the geometrical mapping parameter ε leading to a set of hierarchical momentum balance equations which are solved successively up to and including the third order in We when the secondary field appears for the first time. The computational algorithm developed is applied to the study of the non-rectilinear flow in tubes with triangular and square cross sections. We find that the presence of the yield stress dampens the intensity of the purely viscoelastic vortices, the higher the yield stress the lower the intensity of the vortices in the cross-section, and the further away the vortices are from the center of the cross section as compared to the purely viscoelastic vortices. The results also evidence that viscoelasticity increases the axial flow for given viscoplastic conditions and pressure drop, and consequently increases the rate of flow, a phenomenon that may find applications in optimizing material transportation.  相似文献   

7.
An analytical method is presented to investigate the bending-torsion vibration characteristics of a cylinder with an arbitrary cross-section and partially submerged in water. The compressibility and the free surface waves of the water are considered simultaneously in the analysis. The exact solution of structure–water interaction is obtained mathematically. Firstly, the analytical expression of the velocity potential of the water is derived by using the method of separation of variables. The unknown coefficients in the velocity potential are determined by the longitudinal and circumferential Fourier expansions along the outer surface of the cylinder and are expressed in the form of integral equations including the unknown dynamic bending deflection and torsional angle of the cylinder. Secondly, the force and torque acting on the cylinder per unit length, provided by the water, are obtained by integrating the water dynamic pressure along the circumference of the cylinder. The general solution of bending-torsion vibration of the cylinder under the water dynamic pressure is derived analytically. The integral equations included in the velocity potential of the water can be solved exactly. Finally, the eigenfrequency equation of cylinder–water interaction is obtained by means of the boundary conditions of the cylinder. Some numerical examples for elliptical columns partially submerged in water are provided to show the application of the present method.  相似文献   

8.
The paper is concerned with the new iteration algorithm to solve boundary integral equations arising in boundary value problems of mathematical physics. The stability of the algorithm is demonstrated on the problem of a flow around bodies placed in the incompressible inviscid fluid. With a discrete numerical treatment, we approximate the exact matrix by a certain Töeplitz one and then apply a fast algorithm for this matrix, on each iteration step. We illustrate the convergence of this iteration scheme by a number of numerical examples, both for hard and soft boundary conditions. It appears that the method is highly efficient for hard boundaries, being much less efficient for soft boundaries.  相似文献   

9.
We are concerned with the well-posedness theory of two-dimensional compressible subsonic jet flow issuing from a semi-infinitely long nozzle of arbitrary cross-section. Given any atmospheric pressure p0, we show that there exists a critical mass flux mcr depending on p0 and Ω, such that if the incoming mass flux m0 is less than the critical value, then there exists a unique smooth subsonic jet flow, issuing from the given nozzle. The jet boundary is a free streamline, which initiates from the end point of the nozzle smoothly and extends to the infinity. One of the key observations in this paper is that the restriction of the incoming mass flux guarantees completely the subsonicity of the compressible jet in the whole flow field, which coincides with the observation on the compressible subsonic flows in an infinitely long nozzle without free boundary in [8].  相似文献   

10.
New sandwich panels and tubes have widely applications in nanotechnology such as transportation, naval, aerospace industries, micro and nanoelectromechanical systems and fluid storage. For example, carotid arteries play an important role to high blood rate control that they have a similar structure with flow conveying cylindrical shells. In the current study, stability and free vibration analyses of double-bonded micro composite sandwich piezoelectric tubes conveying fluid flow embedded in an orthotropic foundation under electro-thermo-mechanical loadings are presented. In fact, this work can be provided a valuable background for more research and further experimental investigation. It is assumed that the micro tubes are made of flexible material and smart piezoelectric composites reinforced by carbon nanotubes as core and face sheets, respectively. Energy method and Hamilton's principle are applied to derive the governing equations of motions based on Euler–Bernoulli beam model and using modified strain gradient theory. Moreover, generalized differential quadrature method is used to discretize and solve the governing equations of motions. Numerical results are investigated to predict the influences of length-to-radius, thickness of face sheets-to-thickness of core ratio, temperature changes, orthotropic elastic medium, Knudsen number, and carbon nanotubes volume fraction on the dimensionless natural frequencies and critical flow velocity of sandwich double-bonded piezoelectric micro composite tubes. The results of this article show that increasing the thickness ratio, volume fraction carbon nanotubes and orthotropic elastic constants lead to enhance the dimensionless natural frequency and stability of system, while decrease these parameters with increasing the temperature and length-to-radius ratio.  相似文献   

11.
The boundary integral technique is used to study the effect of deformation on the steady, creeping, thermocapillary migration of a fluid particle under conditions of axisymmetry, negligible thermal convection and an insulated tube wall. The spherical radius of the fluid particle (i.e. the radius as if the particle were a sphere, a ′= (3V p /4π)1/3, V p is the particle volume) and that of the tube are denoted, respectively, by a′and b′. For small capillary numberCa = 0.05, only for a large fluid particle (a′/b′ = 0.8) is deformation significant. Fora′/b′= 0.8, hydrodynamic stresses squeeze the particle, reduce the interaction of the particle with the wall and thereby increase the terminal velocity. For small particles a′/b′< 0.8 and Ca = 0.05 the fluid particles translate as spheres, due to the fact that the fluid particle is too far away from the wall to be subject to distending hydrodynamic stresses. The deformable particle moves faster than a spherical one in the thermocapillary migration. The increase in velocity with capillary number is larger for thermocapillary motion than for buoyancy.  相似文献   

12.
Summary The pulsatile flow of an incompressible viscous fluid in a cylindrical tube of varying cross section is investigated for small Reynolds numbers. The solutions consist of a stedy and an oscillatory part. The shear stress distribution on the wall is evaluated and discussed in detail for special geometries like tapered tubes, locally constricted tubes and peristaltic tubes. The existence of separation in the flow field is noticed.
Zusammenfassung Es wird die pulsierende Strömung einer zähen inkompressiblen Flüssigkeit in Rohren mit veränderlichem Querschnitt bei kleinen Reynoldsschen Zahlen untersucht. Die Lösungen bestehen aus einem stationären und einem oszillatorischen Anteil. Die Schubspannungsverteilung an den Rohrwänden wird für einige besondere geometrische Rohrformen wie konische Rohre, örtlich eingeschnürte Rohre und peristaltische Rohre berechnet und ausführlich diskutiert. Bei einigen Fällen wird die Existenz einer Ablösung im Strömungsfeld festgestellt.
  相似文献   

13.
14.
The computer extended perturbation series method is used to analyze the problem of steady viscous flow in slender tubes. The objective is to obtain an expansion in a power series of λ (= ɛ R, ɛ is a small parameter and R = \fracMLnR = \frac{M}{{L\nu }} is a streamwise Reynolds number) and look for its analytic continuation. Such an expansion was usually terminated at the second or third order term and consequently they have a very limited utility. Sufficiently large number of terms in the series, representing physical quantities are, generated for the detail analysis which enables to get converging Pade’ sums for large λ. Domb-Sykes plot enables in finding singularity restricting the convergence of the series. Useful results valid up to λ = 15 are obtained for different derived quantities whereas in earlier findings [6], analysis could be done only up to λ = 10 resulting into a substantial improvement in the present study.  相似文献   

15.
The computer extended perturbation series method is used to analyze the problem of steady viscous flow in slender tubes. The objective is to obtain an expansion in a power series of λ (= ɛ R, ɛ is a small parameter and is a streamwise Reynolds number) and look for its analytic continuation. Such an expansion was usually terminated at the second or third order term and consequently they have a very limited utility. Sufficiently large number of terms in the series, representing physical quantities are, generated for the detail analysis which enables to get converging Pade’ sums for large λ. Domb-Sykes plot enables in finding singularity restricting the convergence of the series. Useful results valid up to λ = 15 are obtained for different derived quantities whereas in earlier findings [6], analysis could be done only up to λ = 10 resulting into a substantial improvement in the present study.Received: September 17, 2003; revised: July 5, 2004  相似文献   

16.
Unsteady laminar flow of a dusty viscous, incompressible fluid through a cylindrical tube of triangular cross-section is considered in two cases: (i) when the pressure gradient varies harmonically with time and (ii) when it varies exponentially. The velocity fields for the fluid and dust particles have been determined. Flux and skin-friction drag on the walls of the cylinder have been calculated and particular cases discussed.  相似文献   

17.
A large class of microwave, millimeter-wave and terahertz waveguide devices for high-frequency electronic systems are made up of waveguide steps cascaded along the propagation direction, giving rise to diverse modal and numerical analysis techniques to solve Maxwell equations for this problem. In this paper, a novel formulation is proposed to compute the numerical modes in all arbitrary cross-sections and characterize all waveguide steps involved in this kind of structures with a modular and straightforward approach through block-matrix operations. The key idea is expressing the modal fields in terms of 2D nested function spaces (each one for a different cross-section) made up of finite-element basis functions. This leads to finite-element matrices used to compute the modes in all different arbitrary waveguides of the structure from a single inter-cross-section conforming 2D mesh. Moreover, these finite-element matrices and results are used to build directly the mode-matching solution of all steps in the structure. After comparison with analytical results for canonical steps, this flexible and efficient approach is validated with various examples of waveguide devices (two filters, a polarizer, a transformer and a polarization rotator), showing excellent agreement with other numerical methods and measurements.  相似文献   

18.
19.
In this paper, we generalize Colding–Minicozzi’s recent results about codimension-1 self-shrinkers for the mean curvature flow to higher codimension. In particular, we prove that the sphere ${bf S}^{n}(\sqrt{2n})$ is the only complete embedded connected $F$ -stable self-shrinker in $\mathbf{R}^{n+k}$ with $\mathbf{H}\ne 0$ , polynomial volume growth, flat normal bundle and bounded geometry. We also discuss some properties of symplectic self-shrinkers, proving that any complete symplectic self-shrinker in $\mathbf{R}^4$ with polynomial volume growth and bounded second fundamental form is a plane. As a corollary, we show that there is no finite time Type I singularity for symplectic mean curvature flow, which has been proved by Chen–Li using different method. We also study Lagrangian self-shrinkers and prove that for Lagrangian mean curvature flow, the blow-up limit of the singularity may be not $F$ -stable.  相似文献   

20.
Summary The motion of an incompressible viscous fluid in a curved pipe of elliptic cross-section is examined. The flux ratio in this pipe and in a straight pipe of elliptic cross-section has been evaluated under the same pressure conditions.
Zusammenfassung Die vorliegende Arbeit untersucht die Strömung einer inkompressiblen, zähen Flüssigkeit durch ein gekrümmtes Rohr mit elliptischem Querschnitt. Das Verhältnis des Durchflusses in diese Rohr und durch ein geradliniges Rohr von elliptischem Querschnitt unter demselben Druckgefälle wurde berechnet.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号