首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider a discrete food-limited population model with time delay. Firstly, the stability of the equilibrium of the system is investigated by analyzing the characteristic equation. By choosing the time delay as a bifurcation parameter, we prove that Neimark-Sacker bifurcations occur when the delay passes a sequence of critical values. Then the explicit algorithm for determining the direction of the Neimark-Sacker bifurcations and the stability of the bifurcating periodic solutions are derived. Finally, some numerical simulations are given to verify the theoretical analysis.  相似文献   

2.
We get a sharp global stability result for a first order difference equation modelling the growth of bobwhite quail populations. The corresponding higher-dimensional model is also discussed, and our stability conditions improve other recent results for the same equation.  相似文献   

3.
Based on the classical discrete Ricker population model, we incorporate Allee effects by assuming rectangular hyperbola, or Holling-II type functional form, for the birth or growth function and formulate an extended Ricker model. We explore the dynamics features of the extended Ricker model. We obtain domains of attraction for the trivial fixed point. We determine conditions for the existence and stability of positive fixed points and find regions where there exist no positive fixed points, two positive fixed points one of which is stable and two positive fixed points both of which are unstable. We demonstrate that the model exhibits period-doubling bifurcations and investigate the existence and stability of the cycles. We also confirm that Allee effects have stabilization effects, by different measures, through numerical simulations.  相似文献   

4.
We formulate discrete-time stage-structured models, based on systems of difference equations, for mosquito populations. We include the four distinct mosquito metamorphic stages, egg, pupa, larva, and adult, in the models. We derive a formula for the inherent net reproductive number, and investigate existence and stability of fixed points. We also show that the models, by means of numerical simulations, exhibit richer dynamics.  相似文献   

5.
6.
In this paper, we consider the discrete nonlinear delay model which describe the control of a single population of cells. We establish a sufficient condition for oscillation of all positive solutions about the positive equilibrium point and give a sufficient condition for the global attractivity of the equilibrium point. The oscillation condition guarantees the prevalence of the population about the positive steady sate and the global attractivity condition guarantees the nonexistence of dynamical diseases on the population.  相似文献   

7.
A discrete two-stage model which describes the dynamics of a population where juveniles and adults compete for different resources is developed. A motivating example is the green tree frog (Hyla cinerea) where tadpoles and adult frogs feed on separate resources. First, continuous breeding is assumed and the asymptotic behavior of the resulting autonomous model is fully analyzed. It is shown that the unique interior equilibrium is globally asymptotically stable when the inherent net reproductive number is greater than one. However, when the inherent net reproductive number is less than one, the population becomes extinct. Then a seasonal breeding described by a periodic birth rate with period 2 is assumed. It is proved that for this nonautonomous model a period two solution is globally asymptotically stable when the inherent net reproductive number is greater than one and when the inherent net reproductive number is less than one the population becomes extinct. Finally, the advantage (in terms of maximizing the number of juveniles and adults in the population over a fixed time period) of having a seasonal breeding is studied by comparing the average of the juvenile and adult numbers of the periodic solution for the nonautonomous model to the equilibrium solution of the autonomous model. Our results indicate that for high birth rates the equilibrium of the autonomous model is higher than the average of the two cycle solution. Therefore, all other factors being equal, seasonal breeding appears to be deleterious to populations with high birth rates. However, for low birth rates seasonal breeding can be beneficial. It is also shown that for a range of birth rates the nonautnomous model is persistent while the solution to the autonomous model goes to extinction.  相似文献   

8.
In this paper, we study the oscillation, global asymptotic stability, and other properties of the positive solutions of the difference equation
  相似文献   

9.
In this paper, we propose a discrete epidemic model for disease with immunity and latency spreading in a heterogeneous host population, which is derived from the continuous case by using the well-known backward Euler method and by applying a Lyapunov function technique, which is a discrete version of that in the paper by Prüss et al. [J. Prüss, L. Pujo-Menjouet, G.F. Webb, R. Zacher, Analysis of a model for the dynamics of prions, Discrete Contin. Dyn. Syst. Ser. B 6 (2006) 225-235]. It is shown that the global dynamics of this discrete epidemic model with latency are fully determined by a single threshold parameter.  相似文献   

10.
A discrete penalty method for the numerical study of the evolution equations for soft and undeformed magnetoelastic solids is proposed. Some results concerning the stability and the boundedness of the numerical solution are established. Since the aim of the article is also to show the numerical development of singularities (these are expected, due to the similarities with the evolution equations for liquid crystals), some numerical results on a specific test problem are reported and discussed. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 544–557, 1999  相似文献   

11.
This paper is concerned with a nonlocal dispersal population model with spatial competition and aggregation. We establish the existence and uniqueness of positive solutions by the method of coupled upper-lower solutions. We obtain the global stability of the stationary solutions.  相似文献   

12.
The natural species are likely to present several interesting and complex phenomena under random perturbations, which have been confirmed by simple mathematical models. The important questions are: how the random perturbations influence the dynamics of the discrete population models with multiple steady states or multiple species interactions? and is there any different effects for single species and multiple species models with random perturbation? To address those interesting questions, we have proposed the discrete single species model with two stable equilibria and the host-parasitoid model with Holling type functional response functions to address how the random perturbation affects the dynamics. The main results indicate that the random perturbation does not change the number of blurred orbits of the single species model with two stable steady states compared with results for the classical Ricker model with same random perturbation, but it can strength the stability. However, extensive numerical investigations depict that the random perturbation does not influence the complexities of the host-parasitoid models compared with the results for the models without perturbation, while it does increase the period of periodic orbits doubly. All those confirm that the random perturbation has a reverse effect on the dynamics of the discrete single and multiple population models, which could be applied in reality including pest control and resources management.  相似文献   

13.
14.
In this paper we present a discrete survival model with covariates and random effects, where the random effects may depend on the observed covariates. The dependence between the covariates and the random effects is modelled through correlation parameters, and these parameters can only be identified for time-varying covariates. For time-varying covariates, however, it is possible to separate regression effects and selection effects in the case of a certain dependene structure between the random effects and the time-varying covariates that are assumed to be conditionally independent given the initial level of the covariate. The proposed model is equivalent to a model with independent random effects and the initial level of the covariates as further covariates. The model is applied to simulated data that illustrates some identifiability problems, and further indicate how the proposed model may be an approximation to retrospectively collected data with incorrect specification of the waiting times. The model is fitted by maximum likelihood estimation that is implemented as iteratively reweighted least squares. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the bifurcations of a discrete stage-structured population model with self-limitation between the two subgroups are investigated. We explore all possible codimension-one bifurcations associated with transcritical, flip (period doubling) and Neimark-Sacker bifurcations and discuss the stabilities of the fixed points in these non-hyperbolic cases. Meanwhile, we give the explicit approximate expression of the closed invariant curve which is caused by the Neimark-Sacker bifurcation. After that, through the theory of approximation by a flow, we explore the codimension two bifurcations associated with 1:3 strong resonance. We convert the nondegenerate condition of 1:3 resonance into a parametric polynomial, and determine its sign by the theory of complete discrimination system. We introduce new parameters and utilize some variable substitutions to obtain the bifurcation curves around 1:3 resonance, which are returned to the original variables and parameters to express for easy verification. By using a series of complicated approximate identity transformations and polar coordinate transformation, we explore 1:6 weak resonance. Moreover, we calculate the two boundaries of Arnold tongue which are caused by 1:6 weak resonance and defined as the resonance region. Numerical simulations and numerical bifurcation analyzes are made to demonstrate the effective of the theoretical analyzes and to present the relations between these bifurcations. Furthermore, our theoretical analyzes and numerical simulations are explained from the biological point of view.  相似文献   

16.
We consider a simplified system of a growing colony of cells described as a free boundary problem. The system consists of two hyperbolic equations of first order coupled to an ODE to describe the behavior of the boundary. The system for cell populations includes non-local terms of integral type in the coefficients. By introducing a comparison with solutions of an ODE's system, we show that there exists a unique homogeneous steady state which is globally asymptotically stable for a range of parameters under the assumption of radially symmetric initial data.  相似文献   

17.
In this paper, by applying nonstandard finite difference scheme, we propose a discrete multigroup Susceptible‐Infective‐Removed (SIR) model with nonlinear incidence rate. Using Lyapunov functions, it is shown that the global dynamics of this model are completely determined by the basic reproduction number . If , then the disease‐free equilibrium is globally asymptotically stable; if , then there exists a unique endemic equilibrium and it is globally asymptotically stable. Example and numerical simulations are presented to illustrate the results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The dynamics of a structured population model including cannibalism is analyzed. Hopf bifurcation threshold for the cannibalistic attack rate is detected. Linear and nonlinear stability analysis through the Lyapunov Direct Method is also provided. The effects of relevant parameters on the stability are discussed. In particular, cannibalism is found to have a stabilizing effect, whereas the prey growth effect is opposite. The result is emphasized by numerical simulations.  相似文献   

20.
In this paper, we employ the Mawhin's continuation theorem to study the existence of positive periodic solutions of the nonautonomous periodic model of population with continuous and discrete time. It is interesting that the conditions to guarantee the existence of positive periodic solutions of discrete time model are similar to those for the corresponding continuous time model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号