首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many energy harvesting devices employ dynamics ascribed to the classical vibration absorber. Conventional models suggest that when host structural motion excites the harvesters at resonance, maximum electrical power output is achieved. As the harvesters become inertially substantial relative to the structure, this condition no longer holds since the electro-elastic response of the harvester is coupled to the structural vibration. In this regime, the devices become true vibration absorbers that alter the structural oscillations which may consequently affect energy harvesting capability. Distributions of point oscillators have been considered as broadband vibration control treatments making it natural to consider the potential for energy harvesting devices to serve this end. This paper presents an analysis of distributed single- and two-degree-of-freedom, linear electromagnetic oscillators attached to a harmonically excited panel. The coupled Euler–Lagrange equations of motion are solved and the simultaneous goals of vibration attenuation of the host panel and harvested electrical power are computed for several scenarios. It is found that design parameters optimizing the individual goals occur in relative proximity such that small compromises need to be made in order to achieve both ends reasonably well, particularly in regards to the overall mass added to the structure.  相似文献   

2.
基于非线性能量阱的双频激励非线性系统减振   总被引:2,自引:1,他引:1       下载免费PDF全文
孙斌  吴志强 《应用数学和力学》2017,38(11):1240-1250
针对某型民用航空发动机双频带激励特点,建立了单自由度线性振子耦合非线性能量阱(nonlinear energy sink,NES)的动力学模型.根据典型双转子发动机在巡航状态下低、高特征频率比(1∶4.74),为系统设定双频带简谐外激励.利用四阶Runge-Kutta算法,研究了耦合NES振子时系统的振动抑制特征,并从外激励频率对系统主振子动能、系统总体能量的影响等方面,与未耦合NES系统、耦合线性动力吸振器两种情况下的数值计算结果进行对比分析.研究结果表明NES对双频带外激励具有更好的振动抑制效果,用NES降低航空发动机振动有可行性.  相似文献   

3.
A model of a hydrodynamic oscillation damper is proposed. The model is used to obtain the equations describing longitudinal oscillations of a structure which includes a shell partially filled with fluid, and contains a hydrodynamic damper. It is shown that the use of the damper leads to considerable increase in the damping of the oscillations of specified frequencies within the structure.

In modern technology one encounters various types of problems connected with restricting the amplitudes of the axisymmetric vibrations of shells and of the longitudinal oscillations of structures consisting of shells partially filled with fluid. Various devices have been proposed [1] for solving these problems. All these devices have a common feature, namely an elastic shell filled with gas and placed in the fluid. The natural frequency of oscillations of such a shell in a fluid can be tuned to required frequency. The effect of such a device is analogous to the effect of a dynamic vibration damper in mechanical systems [2]. A part of the fluid contained in the shell serves as the active mass of the dynamic damper, and for this reason we shall call such devices the hydrodynamic vibration dampers.  相似文献   


4.
Jrg Wauer 《PAMM》2004,4(1):121-122
Presently, most of the research on vibrations of monolithic piezoelectric rods at weak electric fields is restricted to longitudinal oscillations of such structural members where free and forced vibrations have been dealt with and in the case of resonance conditions not only linear but also nonlinear effects within the constitutive relations have been incorporated. On the other hand, bending and torsional vibrations of piezoceramic one‐parametric rods have not been examined yet. The present contribution develops a linear vibration theory of rods with a focus to bending vibrations taking into account rotatory inertia and shear deformation. The governing boundary value problem for beams with both longitudinal and as well transversal polarization is derived, in particular free vibrations are analyzed. Also nonlinear extensions not only of physical nature but also geometrical ones are addressed. A possible technical application is given. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
揭示了基于非线性混沌理论含间隙的非线性局域共振结构的低频宽带形成机理,提出了一类含间隙非线性局域共振结构设计的新理念.在该间隙非线性局域共振系统中,产生了非线性混沌现象,且这种非线性运动可以成功地改变振动噪声中的频谱结构,当系统运动进入混沌状态时,线性谱能量大大削弱,变成了一个连续的宽频谱,进而有效隔离低频线谱.有限元计算结果表明,正是这个间隙引起的非线性混沌现象导致了低频宽带的产生,且理论分析和有限元分析结果高度一致.因此,这类含间隙非线性局域共振弹性超材料结构的设计新思想为局域共振弹性超材料的发展开辟了新天地,且基于非线性混沌理论的低频带隙的形成机理为减振降噪应用研究奠定了非常重要的理论基础.  相似文献   

6.
随着微机电科技的进步,利用环境振动进行系统自供电已经成为目前非线性动力学研究的热点.将质量-弹簧-阻尼系统与双稳态振动能量捕获系统相结合,提出了附加非线性振子的双稳态电磁式振动能量捕获器,建立系统的力学模型及控制方程.通过数值仿真研究了简谐激励下质量比和调频比发生变化时附加非线性振子的双稳态电磁式振动能量捕获器的动力学响应.通过与附加线性振子双稳态系统的对比,获得了上述参数对附加非线性振子的双稳态电磁式振动能量捕获器发生大幅运动的影响规律,显示出附加非线性振子的双稳态电磁式振动能量捕获器的优越性,并获得了附加非线性振子的双稳态电磁式振动能量捕获器发生连续大幅混沌运动的最优参数配合.上述研究结果为双稳态电磁式振动能量捕获系统的相关研究提供了理论基础.  相似文献   

7.
随着微机电科技的进步,利用环境振动进行系统自供电已经成为目前非线性动力学研究的热点.以附加线性振子的双稳态电磁式振动能量捕获器为研究对象,建立系统的动力学方程,通过数值仿真研究了有色噪声激励作用下双稳态能量捕获系统的动力学行为,分别从有色噪声强度、质量比和调频比3个方面研究了双稳态系统动力学响应,获得了上述参数对双稳态能量捕获系统动力学特性的影响规律,上述研究结果为双稳态电磁式振动能量捕获系统的相关研究提供理论基础.  相似文献   

8.
We study the structure of the periodic steady-state solutions of forced and damped strongly nonlinear coupled oscillators in the frequency–energy domain by constructing forced and damped frequency – energy plots (FEPs). Specifically, we analyze the steady periodic responses of a two degree-of-freedom system consisting of a grounded forced linear damped oscillator weakly coupled to a strongly nonlinear attachment under condition of 1:1 resonance. By performing complexification/averaging analysis we develop analytical approximations for strongly nonlinear steady-state responses. As an application, we examine vibration isolation of a harmonically forced linear oscillator by transferring and confining the steady-state vibration energy to the weakly coupled strongly nonlinear attachment, thereby drastically reducing its steady-state response. By comparing the nonlinear steady-state response of the linear oscillator to its corresponding frequency response function in the absence of a nonlinear attachment we demonstrate the efficacy of drastic vibration reduction through steady-state nonlinear targeted energy transfer. Hence, our study has practical implications for the effective passive vibration isolation of forced oscillators.  相似文献   

9.
An analytical approach is developed for areas of nonlinear science such as the nonlinear free vibration of a conservative, two-degree-of-freedom mass–spring system having linear and nonlinear stiffnesses. The main contribution of this research is twofold. First, it introduces the transformation of two nonlinear differential equations for a two-mass system using suitable intermediate variables into a single nonlinear differential equation and, more significantly, the treatment of a nonlinear differential system by linearization coupled with Newton’s method. Secondly, the major section is the solving of the governing nonlinear differential equation where the displacement of the two-mass system can be obtained directly from the linear second-order differential equation using a first-order variational approach. The aforementioned approach proposed by J.H. He, who actually developed the method, is exactly He’s variational method. This approach is an explicit method with high validity for resolving strong nonlinear oscillation system problems. Two examples of nonlinear two-degree-of-freedom mass–spring systems are analyzed, and verified with published results and exact solutions. The method can be easily extended to other nonlinear oscillations and so could be widely applicable in engineering and science.  相似文献   

10.
圆形膜与流体接触时的振动被广泛应用于工业中.推导了圆形膜在与不可压缩有界流体接触时,非对称自由振动的自振频率.鉴于膜在不可压缩、非粘性流体中振动引起的小振幅,采用速度势函数来描述流体场.使用两种方法来推导系统的自由振动频率.它们包括变分法及一种近似解法——Rayleigh商法.在用两种方法求得的自由振动频率值之间具有良好的相关性.最后,研究了流体的深度、质量密度以及径向张力对耦合系统自由振动频率的影响.  相似文献   

11.
Vibration of circular plates in contact with fluid has extensive applications in the industry. This paper derives added mass and frequencies for asymmetric free vibration of coupled system including clamped circular plate in contact with incompressible bounded fluid. Considering small oscillations induced by the plate vibration in the incompressible and inviscid fluid, velocity potential function is used to describe the fluid motion. Derivation uses Kirchoff’s thin plate theory. Two approaches are used to derive the free vibration frequency of the system. The solutions include an analytical solution employing Fourier–Bessel series and a variational formulation applied simultaneously on the plate and fluid. Strong correlation is found between free vibration frequencies of the two solutions. Finally the effect of fluid depth on the added mass and free vibration frequencies of the coupled system is investigated.  相似文献   

12.
This paper investigates the torsional vibration of single-walled carbon nanotubes (SWCNTs) using a new approach based on doublet mechanics (DM) incorporating explicitly scale parameter and chiral effects. A fourth-order partial differential equation that governs the torsional vibration of nanotubes is derived. Using DM, an explicit equation for the natural frequency in terms of geometrical and mechanical property of CNTs is obtained for both the Zigzag and Armchair nanotube for the torsional vibration mode. It is shown that chiral effects along with the scale parameter play a significant role in the vibration behavior of SWCNTs in torsional vibration mode. Such effects decrease the natural frequency obtained by DM compared to the classical continuum mechanics and nonlocal theory predictions. However, with increase in the length and/or the radius of the tube, the effect of the chiral and scale parameter on the natural frequency decreases.  相似文献   

13.
The free and forced vibrations of a Kelvin-Voigt viscoelastic beam, supported by a nonlinear spring are analytically investigated in this paper. The governing equations of motion along with the compatibility conditions are obtained employing Newton’s second law of motion and constitutive relations. The viscoelastic beam material is constituted by the Kelvin-Voigt rheological model, which is a two-parameter energy dissipation model. The method of multiple timescales, a perturbation technique, is employed which ultimately leads to approximate analytical expressions for vibration response, and provides better insight into how the system parameters influence the vibration response. Finally, the effect of system parameters on the linear and nonlinear natural frequencies, vibration responses and frequency-response curves of the system is characterized.  相似文献   

14.
The purpose of this paper is to develop

1. a theory of laser stimulated vaporization of droplets,

2. a theory of internal heating resulting from vibration waves in linearly responding elastic material, and

3. flame theory.

There are applications to sending information through clouds on laser beams and to the control of temperature in ultrasonic welding, and improvement of the design of aircraft engines and the processes used for the destruction of toxic chemicals.

We develop a theory of thermal excursions resulting from ultrasonic welding in 3 and 7 dimensions, and interpret it as an elastic interaction with damping in a Voigt solid. It is hypothesized that with good control of temperature, one could achieve strong and uniform welds by this process and greatly reduce the cost of manufacturing aircraft, and other aluminum structures. We consider equations describing the conservation of mass, momentum, and energy coupled by an equation of state, and consider general mass, momentum, and energy transfer relationships in a compressible body subjected to external stimuli. For the Voigt solid theory, a linear elastic theory with damping forces, we show how some simple local time averaging gives us a dovetailed system consisting of the elastic wave equations whose solution provides the source term for an otherwise uncoupled heat equation. For the more general theory of droplet vaporization, we illustrate a general nonlinear energy equation which includes a radiation energy conductivity term. We get a class of exact solutions for a nonlinear flame front boundary value problem.  相似文献   


15.
A two-time perturbation technique is used to study the lateral and torsional motions of a nonlinear symmetrical structure subject to a lateral sinusoidal ground motion. It is shown that when the ground acceleration frequency is about one-third of or three times the natural frequency of the lateral motion, the symmetrical structure is particularly susceptible to torsional oscillations even when the natural frequency of torsion is not close to the natural frequency of the lateral motion. The implication of this type of nonlinear coupling between the lateral and torsional motions in real structures subject to earthquakes is also discussed.  相似文献   

16.
Summary Steady-state nonlinear motion confinement is experimentally studied in a system of weakly coupled cantilever beams with active stiffness nonlinearities. Quasistatic swept-sine tests are performed by periodically forcing one of the beams at frequencies close to the first two closely spaced modes of the system, and experimental nonlinear frequency response curves for certain nonlinearity levels are generated. Of particular interest is the detection of strongly localized steady-state motions, wherein vibrational energy becomes spatially confined mainly to the directly excited beam. Such motions exist in neighborhoods of strongly localized antiphase nonlinear normal modes (NNMs) which bifurcate from a spatially extended NNM of the system. Steady-state nonlinear motion confinement is an essentially nonlinear phenomenon with no counterpart in linear theory, and can be implemented in vibration and shock isolation designs of mechanical systems.Presently Assistant Professor of Aerospace and Mechanical Engineering, Boston University (from January 1995).  相似文献   

17.
The influence of the orientation of reinforcing fibers on the natural frequencies and mechanical loss coefficient of coupled vibrations of unsupported symmetric and asymmetric box beams, as evaluated in numerical experiments, is discussed. The calculations were performed under the assumption that the real parts of the complex moduli and mechanical loss coefficient are frequency-independent. Vibration modes were identified by their surface shapes. The boundaries of the regions of mutual transformation of interacting vibration modes were determined by the joint analysis of the dependences of the coupled and partial eigenfrequencies and the mechanical loss coefficients on the orientation angle of reinforcing fibers. It is established that vibrations of a symmetric box beam give rise to two primary interactions: bending–torsional and longitudinal–shear ones, which are united into a unique longitudinal–bending–torsional–shear interaction by the secondary interaction caused by transverse shear strains. Vibrations of an asymmetric box beam give rise to longitudinal–torsional and bending–bending (in two mutually orthogonal planes) interactions. It is shown that in a number of cases variation in the orientation angle of reinforcing fibers is accompanied with a mutual transformation of coupled vibration modes. If the differential equations for natural vibrations involve odd-order derivatives with respect to the spatial variable (a symmetric beam and the bending–bending interaction of an asymmetric beam), then, with variation in the orientation angle of reinforcing fibers, the mutual transformation of coupled vibration modes proceeds. If the differential equations for natural vibrations involve only even-order derivatives (the longitudinal–torsional interaction of an asymmetric beam), no mutual transformation of coupled vibration modes occurs.  相似文献   

18.
Kosior Andrzej 《PAMM》2004,4(1):97-98
This paper presents the results of tests on free and forced harmonic torsional vibrations in a system with a two‐disc inseparable clutch, with structural friction taken into account. Nonlinear histeresis loop describing the frictional‐elastic properties of the system was introduced into the model. The mathematical model of the vibrating system containing two disks inseparable clutch was built. During free vibrations of the system, its damping characteristics were tested by a digital simulation method. The vibration damping decrement as a function of amplitude torsional displacement was determined. When vibrations were harmonically forced, the amplitude ‐ frequency characteristics of the system were determined numerically. The system was used as a nonlinear torsional vibration damper in a linear system with a harmonic force. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
This study analyzes the nonlinear free vibration and post-buckling of nanobeams with flexoelectric effect based on Eringen's differential model. The nanobeam is modeled based on Timoshenko beam's theory. The von-Kármán strain–displacement relation together with the electrical Gibbs free energy and Hamilton's principle are employed to derive equations of motion. The nonlinear free vibration frequencies are obtained for pinned–pinned (P–P) and clamped–clamped (C–C) boundary conditions. Multiple scales method is employed to obtain the closed-form solution for the nonlinear governing equations. By employing this methodology, the natural frequencies of nanobeams are obtained and their post-buckling behavior is examined. The influence of nonlocal parameter, amplitude ratio, and input voltage on the top surface and flexoelectricity constant on nonlinear free vibration and post-buckling characteristics of nanobeam is investigated. In this paper, it is concluded that the flexoelectricity has a significant effect on free vibration of the beams in nano-scale and its effect has to be considered in designing nano-electro-mechanical systems (NEMS) such as nano- generators and nano-sensors.  相似文献   

20.
The non-smooth nonlinear energy sink (NSNES) is used to suppress the vibration of the rotor-blade system. Firstly, the structure and working principle of the NSNES for rotor-blade system are introduced. Then, the dynamics model of the rotor-blade-NSNES system is established by Lagrangian method. And then, numerical simulations are applied to evaluate the vibration suppression ability of the NSNES on rotor and blade. The results show that the suppression rates of NSNES on the rotor and the blade can reach 81% and 74% in steady state resonance under given parameters, respectively; and for transient vibration of blade, a 1.85 times dissipating speed is obtained in rotor-blade system with NSNES than that without NSNES. In particular, NSNES has better vibration suppression capability than linear dynamic vibration absorber (LDVA) when both have the same vibration absorption mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号