首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The main objective of this study is to predict both the subharmonic and superharmonic resonances of the nonlinear oscillation of nanobeams in the presence of surface free energy effects. To this purpose, Gurtin–Murdoch elasticity theory is adopted to the classical beam theory in order to consider the surface Lame constants, surface mass density, and residual surface stress within the differential equations of motion. The Galerkin method together with the method of multiple scales is utilized to investigate the size-dependent response of nanobeams under hard excitations corresponding to various boundary conditions. A parametric analysis is carried out to indicate the influence of the surface elastic parameters on the frequency-response as well as amplitude-response of the nonlinear secondary resonance including multiple vibration modes and interactions between them. It is seen that for the superharmonic excitation, except for the clamped–free boundary condition, the jump phenomenon is along the hardening direction, while in the clamped–free end supports, it is along the softening direction. Moreover, it is revealed that for the subharmonic excitation, within a specific range of the excitation amplitude, the nanobeam is excited, and this range shifts to lower external force by incorporating the surface free energy effects. It is found that in the case of superharmonic excitation, the value of the excitation frequency associated with the bifurcation point at the peak of the frequency-response curve increases by taking the surface free energy effect into consideration.  相似文献   

2.
Nonlocal and surface effects become important for nanoscale devices. To model these effects on frequency response of linear and nonlinear nanobeam subjected to electrostatic excitation, we use Eringen’s nonlocal elastic theory and surface elastic theory proposed by Gurtin and Murdoch to modify the governing equation. Subsequently, we apply Galerkin’s method with exact mode shape including nonlocal and surface effects to get static and dynamic modal equations. After validating the procedure with the available results, we analyze the variation of pull-in voltage and frequency resonance by varying surface and nonlocal parameters. To do frequency analysis of nonlinear system, we solve nonlinear dynamic equation using the method of multiple scale. We found that the frequency response of nonlinear system reduces for fixed excitation as the surface and nonlocal effects increase. Also, we found that the nature of nonlinearity can be tuned from hardening to softening by increasing the nonlocal effects.  相似文献   

3.
Analytical solution for the steady-state response of an Euler–Bernoulli nanobeam subjected to moving concentrated load and resting on a viscoelastic foundation with surface effects consideration in a thermal environment is investigated in this article. At first, based on the Eringen's nonlocal theory, the governing equations of motion are derived using the Hamilton's principle. Then, in order to solve the equation, Galerkin method is applied to discretize the governing nonlinear partial differential equation to a nonlinear ordinary differential equation; solution is obtained employing the perturbation technique (multiple scales method). Results indicate that by increasing of various parameters such as foundation damping, linear stiffness, residual surface stress and the temperature change, the jump phenomenon is postponed and with increasing the amplitude of the moving force and the nonlocal parameter, the jump phenomenon occurs earlier and its frequency and the peak value of amplitude of vibration increases. In addition, it is seen that the non-linear stiffness and the critical velocity of the moving load are important factors in studying nanobeams subjected to moving concentrated load. Presence of the non-linear stiffness of Winkler foundation resulting nanobeam tends to instability and so, the jump phenomenon occurs. But, presence of the linear stiffness will lead to stability of the nanobeam. In the next sections of the paper, frequency responses of the nanobeam made of temperature-dependent material properties under multi-frequency excitations are investigated.  相似文献   

4.
A nonclassical nonlinear continuum model of electrically actuated viscoelastic microbeams is presented based on the modified couple stress theory to consider the microstructure effect in the framework of viscoelasticity. The nonlinear integral-differential governing equation and related boundary conditions of are derived based on the extended Hamilton's principle and Euler–Bernoulli hypothesis for viscoelastic microbeams with clamped-free, clamped-clamped, simply-supported boundary conditions. The proposed model accounts for system nonlinearities including the axial residual stress, geometric nonlinearity due to midplane stretching, electrical forcing with fringing effect. The behavior of the microbeam is simulated using generalized Maxwell viscoelastic model. A new generalized differential/integral quadrature method is developed to solve the resulting governing equation. The developed model is verified against elastic behavior and a favorable agreement is obtained. Efficiency of the developed model is demonstrated by analyzing the quasistatic pull-in phenomena of electrically actuated viscoelastic microbeams with different boundaries at various material length scale parameters and axial residual stresses in the framework of linear viscoelasticity.  相似文献   

5.
This paper investigates bifurcation and chaos of an axially accelerating viscoelastic beam. The Kelvin–Voigt model is adopted to constitute the material of the beam. Lagrangian strain is used to account for the beam's geometric nonlinearity. The nonlinear partial–differential equation governing transverse motion of the beam is derived from the Newton second law. The Galerkin method is applied to truncate the governing equation into a set of ordinary differential equations. By use of the Poincaré map, the dynamical behavior is identified based on the numerical solutions of the ordinary differential equations. The bifurcation diagrams are presented in the case that the mean axial speed, the amplitude of speed fluctuation and the dynamic viscoelasticity is respectively varied while other parameters are fixed. The Lyapunov exponent is calculated to identify chaos. From numerical simulations, it is indicated that the periodic, quasi-periodic and chaotic motions occur in the transverse vibrations of the axially accelerating viscoelastic beam.  相似文献   

6.
In the present article, the idea of using the variable-order fractional-derivative thermoviscoelastic constitutive laws in dynamic stress and vibration analysis of the engineering structures, the required implementation backgrounds, and the relevant numerical solution procedures are investigated for the first time. In this regard, dynamic 3D stress and displacement fields and radial/transverse vibrations of transversely graded viscoelastic spinning thick plates/discs exposed to sudden thermoelastic loads are investigated. Instead of using the approximate plate theories, the exact thermoviscoelasticity theory is employed in the development of the governing equations. Since the variable fractional order is dependent on the localized deformation rates, the resulting thermoviscoelastic integro-differential equations are nonlinear. These equations are solved by utilizing a combination of the second-order backward/central/forward finite difference discretization of the spatial and time domains, numerical evaluation and updating of the Caputo-type fractional derivatives, updating the growing number of terms of the governing equations, and Picard's iterations. Various edge conditions are considered. Finally, comprehensive sensitivity analyses and various 3D plots are presented and discussed regarding the effects of the variable fractional order of the constitutive law, time variations of the nonuniformly distributed transverse loads, and edge conditions on the distributions and damping of the resulting displacement and stress components.  相似文献   

7.
This study analyzes the nonlinear free vibration and post-buckling of nanobeams with flexoelectric effect based on Eringen's differential model. The nanobeam is modeled based on Timoshenko beam's theory. The von-Kármán strain–displacement relation together with the electrical Gibbs free energy and Hamilton's principle are employed to derive equations of motion. The nonlinear free vibration frequencies are obtained for pinned–pinned (P–P) and clamped–clamped (C–C) boundary conditions. Multiple scales method is employed to obtain the closed-form solution for the nonlinear governing equations. By employing this methodology, the natural frequencies of nanobeams are obtained and their post-buckling behavior is examined. The influence of nonlocal parameter, amplitude ratio, and input voltage on the top surface and flexoelectricity constant on nonlinear free vibration and post-buckling characteristics of nanobeam is investigated. In this paper, it is concluded that the flexoelectricity has a significant effect on free vibration of the beams in nano-scale and its effect has to be considered in designing nano-electro-mechanical systems (NEMS) such as nano- generators and nano-sensors.  相似文献   

8.
Analytical solutions for the problems of an elastic half-space and an elastic half-plane subjected to a distributed normal force are derived in a unified manner using the general form of the linearized surface elasticity theory of Gurtin and Murdoch. The Papkovitch–Neuber potential functions, Fourier transforms and Bessel functions are utilized in the formulation. The newly obtained solutions are general and reduce to the solutions for the half-space and half-plane contact problems based on classical linear elasticity when the surface effects are not considered. Also, existing solutions for the half-space and half-plane contact problems based on simplified versions of Gurtin and Murdoch’s surface elasticity theory are recovered as special cases of the current solutions. By applying the new solutions directly, Boussinesq’s flat-ended punch problem, Hertz’s spherical punch problem and a conical punch problem are solved, which lead to depth-dependent hardness formulas different from those based on classical elasticity. The numerical results reveal that smoother elastic fields and smaller displacements are predicted by the current solutions than those given by the classical elasticity-based solutions. Also, it is shown that the out-of-plane displacement and stress components strongly depend on the residual surface stress. In addition, it is found that the new solutions based on the surface elasticity theory predict larger values of the indentation hardness than the solutions based on classical elasticity.  相似文献   

9.
In this paper, to consider all surface effects including surface elasticity, surface stress, and surface density, on the nonlinear free vibration analysis of simply-supported functionally graded Euler–Bernoulli nanobeams using nonlocal elasticity theory, the balance conditions between FG nanobeam bulk and its surfaces are considered to be satisfied assuming a cubic variation for the component of the normal stress through the FG nanobeam thickness. The nonlinear governing equation includes the von Kármán geometric nonlinearity and the material properties change continuously through the thickness of the FG nanobeam according to a power-law distribution of the volume fraction of the constituents. The multiple scale method is employed as an analytical solution for the nonlinear governing equation to obtain the nonlinear natural frequencies of FG nanobeams. The effect of the gradient index, the nanobeam length, thickness to length ratio, mode number, amplitude of deflection to radius of gyration ratio and nonlocal parameter on the frequency ratios of FG nanobeams is investigated.  相似文献   

10.
In this paper, Mindlin’s second strain gradient theory is formulated and presented in an arbitrary orthogonal curvilinear coordinate system. Equilibrium equations, generalized stress-strain constitutive relations, components of the strain tensor and their first and second gradients, and the expressions for three different types of traction boundary conditions are derived in any orthogonal curvilinear coordinate system. Subsequently, for demonstration, Mindlin’s second strain gradient theory is represented in the spherical coordinate system as a highly-practical coordinate system in nanomechanics. Second strain gradient elasticity have been developed mainly for its ability to capture the surface effects in the presence of micro-/nano- structures. As a numeric illustration of the theory, the surface relaxation of spherical domains in Mindlin’s second strain gradient theory is considered and compared with that in the framework of Gurtin–Murdoch surface elasticity. It is observed that Mindlin’s second strain gradient theory predicts much larger value for the radial displacement just near the surface in comparison to Gurtin–Murdoch surface elasticity.  相似文献   

11.
In this paper, we study a mathematical model of nonlinear thermoelastic wave propagation in fluid‐saturated porous media, considering memory effect in the heat propagation. In particular, we derive the governing equations in one dimension by using the Gurtin–Pipkin theory of heat flux history model and specializing the relaxation function in such a way to obtain a fractional Erdélyi–Kober integral. In this way, we obtain a nonlinear model in the framework of time‐fractional thermoelasticity, and we find an explicit analytical solution by means of the invariant subspace method. A second memory effect that can play a significant role in this class of models is parametrized by a generalized time‐fractional Darcy law. We study the equations obtained also in this case and find an explicit traveling wave type solution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
To overcome the long wavelength and time limits of classical elastic theory, this paper presents a fractional nonlocal time-space viscoelasticity theory to incorporate the non-locality of both time and spatial location. The stress (strain) at a reference point and a specified time is assumed to depend on the past time history and the stress (strain) of all the points in the reference domain through nonlocal kernel operators. Based on an assumption of weak non-locality, the fractional Taylor expansion series is used to derive a fractional nonlocal time-space model. A fractional nonlocal Kevin–Voigt model is considered as the simplest fractional nonlocal time-space model and chosen to be applied for structural dynamics. The correlation between the intrinsic length and time parameters is discussed. The effective viscoelastic modulus is derived and, based on which, the tension and vibration of rods and the bending, buckling and vibration of beams are studied. Furthermore, in the context of Hamilton’s principle, the governing equation and the boundary condition are derived for longitudinal dynamics of the rod in a more rigorous manner. It is found that when the external excitation frequency and the wavenumber interact with the intrinsic microstructures of materials and the intrinsic time parameter, the nonlocal space-time effect will become substantial, and therefore the viscoelastic structures are sensitive to both microstructures and time.  相似文献   

13.
Mirjana Stojanovic 《PAMM》2013,13(1):367-368
Fractional differential equations have received increasing attention during recent years since the behavior of many physical systems can be properly described using the fractional order system theory. By fractional analog for Duhamel principle we give the existence-uniqueness result for linear and nonlinear time fractional evolution equations with singularities in corresponding norm in extended Colombeau algebra of generalized functions. In order to find the explicit solutions we use integral representation of the solution obtained via Laplace and Fourier transforms in succession and their inverses. We deal with some nonlinear models with singularities appearing in viscoelasticity and in anomalous processes, extending the results in viscoelasticity, continuum random walk, seismology, continuum mechanics and many other branches of life and science. The main task is finding existence-uniqueness results like in the case of evolution equations with entire derivatives. By examining the fractional evolution equations it turns out that they lead to till now known results from the evolution equations with entire derivatives in limiting case. They give more, behavior of the solution when order of derivatives are inside the intervals of entire points. In this way we can follow the influence of the operators generated by entire derivative in many fractional time evolution PDEs especially with singular initial data, and non-Lipschitz's nonlinear term. Apart from evolution equations we prove also an existence-uniqueness result for an initial value problem with singularities for linear and nonlinear fractional elliptic equation of Helmholtz type and fractional order α, where 1 < Re(α) ≤ 2, with respect to the one variable from R +. As a framework, we employ also Colombeau algebra of generalized functions containing fractional derivatives and operations among them in order to deal with the fractional equations with singularities. We apply the same techniques to the fractional Laplace and Poisson equation linear and nonlinear ones. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
该文成功地解答了3个关于非局部应力理论用于纳米梁的问题:(ⅰ) 在绝大多数研究中,非局部效应增加导致纳米结构体刚度下降,其现象表现为弯曲挠度增加,固有频率减少,屈曲载荷下降,但为什么Eringen 的非局部弹性理论给出了完全相反的结论;(ⅱ) 为什么在某些研究结果中,非局部效应消失或是对研究结果无影响,比如纳米悬臂梁在集中载荷作用下的弯曲挠度; (ⅲ) 在高阶控制方程中,为什么高阶边界条件不存在.通过应用非局部弹性理论和精确变分原理分析纳米梁的弯曲问题,推导出全新的平衡条件、控制方程、边界条件和静态响应.这些方程和条件包含了与之前的相关研究结果符号相反的高阶微分项,这一差别导致了纳米效应对结构体的影响结果完全相反. 还证明之前为大家所公认的纳米梁静态或动态平衡条件实际上没有达到平衡,只有用等效弯矩代替非局部弯矩时,才可达到平衡.这些结论通常是可以被其它方法,比如应变梯度理论、耦合应力模型以及相关实验所证明.  相似文献   

15.
In this paper, the general Caputo-type fractional differential operator introduced by Pr. Anatoly N. Kochubei is applied to the linear theory of viscoelasticity. Firstly, using the general Caputo-type derivative, a generalized linear viscoelastic constitutive equation is proposed for the first time. Secondly, the momentum equation for the plane Couette flow of viscoelastic fluid with the constitutive relation is given as an integrodifferential equation and the analytical solution of the equation is established by employing the separation of variables method. Lastly, for special cases of the general constitutive relation, the analytical solutions are obtained in terms of the Mittag-Leffler functions.  相似文献   

16.
The free and forced vibrations of a Kelvin-Voigt viscoelastic beam, supported by a nonlinear spring are analytically investigated in this paper. The governing equations of motion along with the compatibility conditions are obtained employing Newton’s second law of motion and constitutive relations. The viscoelastic beam material is constituted by the Kelvin-Voigt rheological model, which is a two-parameter energy dissipation model. The method of multiple timescales, a perturbation technique, is employed which ultimately leads to approximate analytical expressions for vibration response, and provides better insight into how the system parameters influence the vibration response. Finally, the effect of system parameters on the linear and nonlinear natural frequencies, vibration responses and frequency-response curves of the system is characterized.  相似文献   

17.
In this paper, nonlinear dynamics, vibration and stability analysis of piezo-visco medium nanoshell resonator (PVM-NSR) based on functionally graded (FG) cylindrical nanoshell integrated with two piezoelectric layers subjected to visco-pasternak medium, electrostatic and harmonic excitations is investigated. Nonclassical method of the electro-elastic Gurtin–Murdoch surface/interface theory with von-Karman–Donnell's shell model as well as Hamilton's principle, the assumed mode method combined with Lagrange–Euler's are considered. Complex averaging method combined with arc-length continuation is used to achieve a numerical solution for the steady state vibrations of the system. The stability analysis of the steady state response is performed. The parametric studies such as the effects of different boundary conditions, different geometric ratios, structural parameters, electrostatic and harmonic excitation on the nonlinear frequency response and stability analysis are studied. The results indicate that near the natural frequency of the nanoshell, it will lead to resonance and will have large motion amplitude and near the resonant frequency, the nanoshell shows a softening type of nonlinear behavior, and the nanoshell bandwidth increases due to nonlinear factors. In this range, nanoshell has three different ranges of motion, of which two are stable and the other unstable, and so the jump phenomenon and saddle-node bifurcation are visible in the behavior of the system. Also piezoelectric voltage influences on static deformation and resonant frequency but has no significant effect on nonlinear behavior and bandwidth and also system very sensitive to the damping coefficient and due to decrease of nano shell stiffness, natural frequency decreases. And also, increasing or decreasing of some parameters lead to increasing or decreasing the resonance amplitude, resonant frequency, the system's instability, nonlinear behavior and bandwidth.  相似文献   

18.
We analyze self-similar solutions to a nonlinear fractional diffusion equation and fractional Burgers/Korteweg–deVries equation in one spatial variable. By using Lie-group scaling transformation, we determined the similarity solutions. After the introduction of the similarity variables, both problems are reduced to ordinary nonlinear fractional differential equations. In two special cases exact solutions to the ordinary fractional differential equation, which is derived from the diffusion equation, are presented. In several other cases the ordinary fractional differential equations are solved numerically, for several values of governing parameters. In formulating the numerical procedure, we use special representation of a fractional derivative that is recently obtained.  相似文献   

19.
This paper investigates the fractional non-axisymmetric consolidation of stratified cross-anisotropic visco-poroelastic media. Firstly, based on the Laplace–Hankel transform, the ordinary differential equations of cross-anisotropic poroelastic media are derived, which are extended to those of fractional visco-poroelastic media by introducing the fractional Merchant model and the elastic-viscoelastic correspondence principle. Then, the extended equations are solved by the extended precise integration method (PIM), and the proposed theory is compared with the results reported in the references. Finally, selected numerical examples are performed to investigate the effects of the order of fractional derivative, viscoelasticity, cross-anisotropy and stratification on the non-axisymmetric consolidation.  相似文献   

20.
An efficient method is developed to determine the multiple term eigen-solutions of the elastic–plastic stress fields at the plane V-notch tip in power-law hardening materials. By introducing the asymptotic expansions of stress and displacement fields around the V-notch tip into the fundamental equations of elastic–plastic theory, the governing ordinary differential equations (ODEs) with the stress and displacement eigen-functions are established. Then the interpolating matrix method is employed to solve the resulting nonlinear and linear ODEs. Consequently, the first four and even more terms of the stress exponents and the associated eigen-solutions are obtained. The present method has the advantages of greater versatility and high accuracy, which is capable of dealing with the V-notches with arbitrary opening angle under plane strain and plane stress. In the present analysis, both the elastic and the plastic deformations are considered, thus the complete elastic and plastic stress asymptotic solutions are evaluated. Numerical examples are shown to demonstrate the accuracy and effectiveness of the present method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号