首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical solution based on a new exact closed form procedure is presented for free vibration analysis of stepped circular and annular FG plates via first order shear deformation plate theory of Mindlin. The material properties change continuously through the thickness of the plate, which can vary according to a power-law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. Based on the domain decomposition technique, five highly coupled governing partial differential equations of motion for freely vibrating FG plates were exactly solved by introducing the new potential functions as well as using the method of separation of variables. Several comparison studies were presented by those reported in the literature and the FEM analysis, for various thickness values and combinations of stepped thickness variations of circular/annular FG plates to demonstrate highly stability and accuracy of present exact procedure. The effect of the geometrical and material plate parameters such as step thickness ratios, step locations and the power law index on the natural frequencies of FG plates is investigated.  相似文献   

2.
As there are a few finite difference models in the literature for axisymmetric bending of plates, only one of these models is equivalent to the Hencky bar-net model (HBM) that comprises a finite number of rigid circular arcs and straight radial segments joined by frictionless hinges with elastic rotational springs. This paper is concerned with uncovering the one finite difference model (FDM) that is equivalent to the HBM. Based on the energy formulation, the governing equation for HBM is derived and it will be used to identify the FDM that has the same discrete set of equations. By using this equivalency between the HBM and the identified FDM, the expressions of edge spring stiffnesses of HBM are derived for various boundary conditions. As illustrative examples, the HBM is used to solve the bending problems of circular plates under uniformly and linearly increasing distributed loads. The analytical solutions of HBM avoids the singularity problem faced in FDM at the plate center. This paper also presents some benchmark bending solutions for annular plates with and without an internal ring support for different boundary restraints by using the HBM.  相似文献   

3.
In the present paper, a non-classical model for functionally graded annular sector microplates under distributed transverse loading is developed based on the modified couple stress theory and the first-order shear deformation plate theory. The model contains a single material length scale parameter which can capture the size effect. The material properties are graded through the thickness of plates according to a power-law distribution of the volume fraction of the constituents. The equilibrium equations and boundary conditions are simultaneously derived from the principle of minimum total potential energy. The system of equilibrium equations is then solved using the generalized differential quadrature method. The effects of length scale parameter, power-law index and geometrical parameters on the bending response of annular sector plates subjected to distributed transverse loading are investigated.  相似文献   

4.
基于两组板考虑初始荷载效应的动力控制微分方程:一般形式的动力控制微分方程和极坐标形式的动力控制微分方程,运用Galerkin(伽辽金)法求解得到了简支矩形板、固支矩形板、简支等边三角形板、固支椭圆形板、简支圆形板和固支圆形板6种典型板考虑初始荷载效应的自由振动基频(第一阶频率)近似解.通过与相关文献提出的有限元法计算结果对比,验证了公式的正确性.基频近似解表达式简单明了,物理意义明确,清楚地说明了初始荷载及相关因素对板自由振动基频的影响,直观地说明了板的初始荷载效应这一概念.计算分析表明:初始荷载的存在增加了板的弯曲刚度,提高了板的自振频率.这种初始荷载效应对频率的影响主要受初始荷载大小、跨厚比及边界条件等因素的影响.在计算分析和设计中应考虑并重视这种初始荷载效应对板计算分析带来的影响.  相似文献   

5.
Based on the first order shear deformation theory, free vibration behavior of functionally graded (FG) annular sector plates integrated with piezoelectric layers is investigated. The distribution of electric potential along the thickness direction of piezoelectric layers which is assumed to be a combination of linear and sinusoidal functions, satisfies both open and closed circuit electrical boundary conditions. Through a reformulation of governing equations and harmonic motion assumption, a novel decoupling method is suggested to transform the six second order coupled partial differential equations of motion into two eighth order and fourth order equations. A Fourier series method is then employed to present analytical solutions for free vibration of smart FG annular sector plates with simply supported radial edges and arbitrarily supported circular edges. The results, which can be used as a benchmark and suitable for design purposes, are verified with those reported in the literature. Finally, by presenting extensive ranges of frequencies, the effects of geometric parameters, power law index, FG and piezoelectric materials, electrical and mechanical boundary conditions as well as the piezoelectric layer thickness on vibration response of smart annular sector plates are discussed in detail.  相似文献   

6.
In this study, the bending solution of simply supported transversely isotropic thick rectangular plates with thickness variations is provided using displacement potential functions. To achieve this purpose, governing partial differential equations in terms of displacements are obtained as the quadratic and fourth order. Then, the governing equations are solved using the separation of variables method satisfying exact boundary conditions. The advantage of the purposed method is that there is no limitation on the thickness of the plate or the way the plate thickness is being varied. No simplifying assumption in the analysis process leads to the applicability and reliability of the present method to plates with any arbitrarily chosen thickness. In order to confirm the accuracy of the proposed solution, the obtained results are compared with existing published analytical works for thin variable thickness and thick constant thickness plate. Also, due to the lack of analytical research on thick plates with variable thickness, the obtained results are verified using the finite element method which shows excellent agreement. The results show that the maximum displacement of the plates with variable thickness is moved from the center toward the thinner plate edge. In addition, results exhibit the profound effects of both thickness and aspect ratio on stress distribution along the thickness of the plate. Results also show that varying thickness has not a profound impact on bending and twisting moments in transversely isotropic plates. Five different materials consist of four transversely isotropic and one isotropic, as a special case, are considered in this paper, which it is shown that the material properties have a more considerable impact on higher thickness plate.  相似文献   

7.
Using a three-dimensional layerwise-finite element method, the free vibration of thick laminated circular and annular plates supported on the elastic foundation is studied. The Pasternak-type formulation is employed to model the interaction between the plate and the elastic foundation. The discretized governing equations are derived using the Hamilton’s principle in conjunction with the layerwise theory in the thickness direction, the finite element (FE) in the radial direction and trigonometric function in the circumferential direction, respectively. The fast rate of convergence of the method is demonstrated and to verify its accuracy, comparison studies with the available solutions in the literature are performed. The effects of the geometrical parameters, the material properties and the elastic foundation parameters on the natural frequency parameters of the laminated thick circular and annular plates subjected to various boundary conditions are presented.  相似文献   

8.
An exact solution is obtained for a dynamic problem concerning the bending of circular and annular plates under the influence of a force rotating at a constant angular velocity. It is shown that this problem is related to the problem of the bending of a plate under the influence of a harmonic load. Velocities leading to resonance are found and their first values are calculated for circular hinged and rigidly fastened plates.Translated from Dinamicheskie Sistemy, No. 4, pp. 62–65, 1985.  相似文献   

9.
The main objective of this research work is to present analytical solutions for free vibration analysis of moderately thick rectangular plates, which are composed of functionally graded materials (FGMs) and supported by either Winkler or Pasternak elastic foundations. The proposed rectangular plates have two opposite edges simply-supported, while all possible combinations of free, simply-supported and clamped boundary conditions are applied to the other two edges. In order to capture fundamental frequencies of the functionally graded (FG) rectangular plates resting on elastic foundation, the analysis procedure is based on the first-order shear deformation plate theory (FSDT) to derive and solve exactly the equations of motion. The mechanical properties of the FG plates are assumed to vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. First, a new formula for the shear correction factors, used in the Mindlin plate theory, is obtained for FG plates. Then the excellent accuracy of the present analytical solutions is confirmed by making some comparisons of the results with those available in literature. The effect of foundation stiffness parameters on the free vibration of the FG plates, constrained by different combinations of classical boundary conditions, is also presented for various values of aspect ratios, gradient indices, and thickness to length ratios.  相似文献   

10.
This paper presents development of the spectral element method (SEM) for analysis of circular and annular circular plates vibration under impact load. A novel formulation is proposed in frequency domain for conducting spectral element matrix. Several numerical examples are presented in order to demonstrate performance of the presented method compared to other numerical methods in literature. The presented formulation was applied in order to analyze vibration of annular circular plates with various thicknesses and various internal-to-external radius ratios. In addition, annular circular plate displacements subjected to an impact load were calculated using the presented SEM.  相似文献   

11.
This paper presents a semi-analytical approach to investigate wave propagation characteristics in functionally graded graphene reinforced piezoelectric composite plates. Three patterns of graphene platelets (GPLs) describe the layer-wise variation of material properties in the thickness direction. Based on the Reissner-Mindlin plate theory and the isogeometric analysis, elastodynamic wave equation for the piezoelectric composite plate is derived by Hamilton’s principle and parameterized with the non-uniform rational B-splines (NURBS). The equation is transformed into a second-order polynomial eigenvalue problem with regard to wave dispersion. Then, the semi-analytical approach is validated by comparing with the existing results and the convergence on computing dispersion behaviors is also demonstrated. The effects of various distributions, volume fraction, size parameters and piezoelectricity of GPLs as well as different geometry parameters of the composite plate on dispersion characteristics are discussed in detail. The results show great potential of graphene reinforcements in design of smart composite structures and application for structural health monitoring.  相似文献   

12.
The present study examines the nonlinear stability and free vibration features of multilayer functionally graded graphene platelet-reinforced polymer composite (FG-GPLRPC) rectangular plates under compressive in-plane mechanical loads in pre/post buckling regimes. The GPL weight fractions layer-wisely vary across the lateral direction. Furthermore, GPLs are uniformly dispersed in the polymer matrix of each layer. The effective Young's modulus of GPL-reinforced nanocomposite is assessed via the modified Halpin–Tsai technique, while the effective mass density and Poisson's ratio are attained by the rule of mixture. Taking the von Kármán-type nonlinearity into account for the large deflection of the FG-GPLRPC plate, as well as utilizing the variational differential quadrature (VDQ) method and Lagrange equation, the system of discretized coupled nonlinear equations of motions is directly achieved based upon a parabolic shear deformation plate theory; taking into account the impacts of geometric nonlinearity, in-plane loading, rotary inertia and transverse shear deformation. Afterwards, first, by neglecting the inertia terms, the pseudo-arc length approach is used in order to plot the equilibrium postbuckling path of FG-GPLRPC plates. Then, supposing a time-dependent disturbance about the postbuckling equilibrium status, the frequency responses of pre/post-buckled FG-GPLRC plate are obtained in terms of the compressive in-plane load. The influences of various vital design parameters are discussed through various parametric studies.  相似文献   

13.
The elastic behaviour of a solid circular plate of variable thickness under stationary temperature distribution is studied. The Young’s modulus and Poisson’s ratio are, however, supposed to be constants. Thermal deflections and moments per unit length and also the bending stresses have been determined for both clamped and simply-supported plates.  相似文献   

14.
本文按照各向同性和正交各向异性圆板的大挠度理论,研究了具有光滑中心的波纹圆板在均布和中心集中荷载联合作用下的非线性弯曲问题.应用修正迭代法,我们得到了夹紧固定和滑动固定两种边界条件下十分精确的解析解.  相似文献   

15.
Nonlinear bending analysis is first presented for functionally graded elliptical plates resting on two-parameter elastic foundations, and investigations on FGM elliptical plates with immovable simply supported edge are also new in literature. Material properties are assumed to be temperature-dependent and graded in the thickness direction. The governing equations of a functionally graded plate are based on Reddy’s high-order shear deformation plate theory that includes thermal effects. Ritz method is employed to determine the central deflection-load and bending moment-load curves, the validity can be confirmed by comparison with related researchers’ results, and it is worth noting that the forms of approximate solutions are well-chosen in consideration of both simplicity and accuracy. Influences played by different supported boundaries, thermal environmental conditions, foundation stiffness, ratio of major to minor axis and volume fraction index are discussed in detail.  相似文献   

16.
This paper presents an analytical solution to estimate the liquid film thickness in two-phase annular flow through a circular pipe using electrical resistance tomography. Gas–liquid flow with circular gas core surrounded by a liquid film is considered. Conformal mapping is employed to obtain the analytic solution for annular flow with an eccentric circular gas core. The liquid film thickness for an arbitrary annular flow is estimated by comparing the resistance values for concentric and eccentric annular flows. The film thickness estimation has a good performance when the normalized distance between the gas core center and the flow center is less than 0.2 and the void fraction is greater than 0.4, the estimated error of the normalized thickness is less than 0.04.  相似文献   

17.
The possibility of applying the mechanicomathematical model of bending of a package of transversely isotropic plates to approximate calculations of thick plates is investigated. Within the frame work of this model, the problem of axisymmetric bending of a package of two identical plates with simply supported edges is considered. The conditions of rigid contact are given between the plates. Based on the analytical result obtained, the unknown distribution of stresses and displacements across the thickness of the plate is approximated by the distribution of corresponding parameters in the package of two plates. For an isotropic body, the results of numerical calculations are compared with those given by the 3D theory of elasticity. In the case of a transversely isotropic body, a comparison with the results found by the refined bending model of plates (taking into account the transverse compression and shear) and the Timoshenko model is carried out. The accuracy to which the boundary conditions in every model are satisfied is analyzed. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 43, No. 5, pp. 603–616, September–October, 2007.  相似文献   

18.
A new sinusoidal shear deformation theory is developed for bending, buckling, and vibration of functionally graded plates. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns and has strong similarities with classical plate theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton’s principle. The closed-form solutions of simply supported plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the bending, buckling, and vibration responses of functionally graded plates.  相似文献   

19.
Using the perturbation method we solve the problem of the steady-state transverse vibrations of a plate of variable thickness consisting of circular rings made of different cylindrically anisotropic materials. Numerical studies are carried out for plates consisting of two rings with different laws of variation of thickness. We give the graphs of the distribution of values of the bending moments. Translated fromTeoreticheskaya i Prikladnaya Mekhanika, No. 23, 1992, pp. 92–95.  相似文献   

20.
Milan Kutnjak 《PAMM》2003,3(1):454-455
The bending problem of thin plates is presented through biharmonic equations expressed in terms of plate deflections. The theory of analytical functions is used to transform the problem to the Hilbert boundary value problem. The stress and deformation state of the plate is descibed by analitical functions which satisfy mixed boundary conditions. A circular plate with corresponded boundary conditions is treated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号