首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The sulfates Nb(2)O(2)(SO(4))(3), MoO(2)(SO(4)), WO(SO(4))(2,) and two modifications of Re(2)O(5)(SO(4))(2) have been synthesized by the solvothermal reaction of NbCl(5), WOCl(4), Re(2)O(7)(H(2)O)(2), and MoO(3) with sulfuric acid/SO(3) mixtures at temperatures between 200 and 300 °C. Besides the X-ray crystal structure determination of all compounds, the thermal behavior was investigated using thermogravimetric studies. WO(SO(4))(2) (monoclinic, P2(1)/n, a = 7.453(1) ?, b = 11.8232(8) ?, c = 7.881(1) ?, β = 107.92(2)°, V = 660.7(1) ?(3), Z = 4) and both modifications of Re(2)O(5)(SO(4))(2) (I: orthorhombic, Pba2, a = 9.649(1) ?, b = 8.4260(8) ?, c = 5.9075(7) ?, V = 480.27(9) ?(3), Z = 2; II: orthorhombic, Pbcm, a = 7.1544(3) ?, b = 7.1619(3) ?, c = 16.8551(7) ?, V = 863.64(6) ?(3), Z = 4) are the first structurally characterized examples of tungsten and rhenium oxide sulfates. Their crystal structure contains layers of sulfate connected [W═O] moieties or [Re(2)O(5)] units, respectively. The cohesion between layers is realized through weak M-O contacts (343-380 pm). Nb(2)O(2)(SO(4))(3) (orthorhombic, Pna2(1), a = 9.9589(7) ?, b = 11.7983(7) ?, c = 8.6065(5) ?, V = 1011.3(1) ?(3), Z = 4) represents a new sulfate-richer niobium oxide sulfate. The crystal structure contains a three-dimensional network of sulfate connected [Nb═O] moieties. In MoO(2)(SO(4)) (monoclinic, I2/a, a = 8.5922(6) ?, b = 12.2951(6) ?, c = 25.671(2) ?, β = 94.567(9)°, V = 2703.4(3) ?(3), Z = 24) [MoO(2)] units are connected through sulfate ions to a three-dimensional network, which is pervaded by channels along [100] accommodating the terminal oxide ligands. In all compounds except WO(SO(4))(2), the metal ions are octahedrally coordinated by monodentate sulfate ions and oxide ligands forming short M═O bonds. In WO(SO(4))(2), the oxide ligand and two monodentate and two bidentate sulfate ions build a pentagonal bipyramid around W. The thermal stability of the sulfates decreases in the order Nb > Mo > W > Re; the residues formed during the decomposition are the corresponding oxides.  相似文献   

2.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

3.
We describe the successful synthesis of the first mixed-cation (pseudoternary) amidoborane, Na[Li(NH(2)BH(3))(2)], with theoretical hydrogen capacity of 11.1 wt%. Na[Li(NH(2)BH(3))(2)] crystallizes triclinic (P1) with a = 5.0197(4) ?, b = 7.1203(7) ?, c = 8.9198(9) ?, α = 103.003(6)°, β = 102.200(5)°, γ = 103.575(5)°, and V = 289.98(5) ?(3) (Z = 2), as additionally confirmed by Density Functional Theory calculations. Its crystal structure is topologically different from those of its orthorhombic LiNH(2)BH(3) and NaNH(2)BH(3) constituents, with distinctly different coordination spheres of Li (3 N atoms and 1 hydride anion) and Na (6 hydride anions). Na[Li(NH(2)BH(3))(2)], which may be viewed as a product of a Lewis acid (LiNH(2)BH(3))/Lewis base (NaNH(2)BH(3)) reaction, is an important candidate for a novel lightweight hydrogen storage material. The title material decomposes at low temperature (with onset at 75 °C, 6.0% mass loss up to 110 °C, and an additional 3.0% up to 200 °C) while evolving hydrogen contaminated with ammonia.  相似文献   

4.
Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed.  相似文献   

5.
Dark green crystals of (NpO(2))(3)(OH)(SeO(3))(H(2)O)(2)·H(2)O (1) have been prepared by a hydrothermal reaction of neptunyl(V) and Na(2)SeO(4) in an aqueous solution at 150 °C, while green plates of Na(NpO(2))(SeO(3))(H(2)O) (2) have been synthesized by evaporation of a solution of neptunyl(V), H(2)SeO(4), and NaOH at room temperature. Both compounds have been characterized by single-crystal X-ray diffraction. The structure of compound contains three crystallographically unique Np atoms that are bonded to two O atoms to form a nearly linear O═Np═O NpO(2)(+) cation. Neighboring Np(5+) ions connect to each other through a bridging oxo ion from the neptunyl unit, a configuration known as cation-cation interactions (CCIs), to build a complex three-dimensional network. More specifically, each Np(1)O(2)(+), Np(2)O(2)(+), and Np(3)O(2)(+) cation is involved in three, five, and four CCIs with other units, respectively. The framework of neptunyl(V) pentagonal bipyramids is decorated by selenite trigonal pyramids with one-dimensional open channels where uncoordinated waters are trapped via hydrogen bonding interactions. Compound adopts uranophane-type [(NpO(2))(SeO(3))](-) layers, which are separated by Na(+) cations and water molecules. Within each layer, neptunyl(V) pentagonal bipyramids share equatorial edges with each other to form a single chain that is further connected by both monodentate and bidentate selenite trigonal pyramids. Crystallographic data: compound, monoclinic, P2(1)/c, Z = 4, a = 6.6363(8) ?, b = 15.440(2) ?, c = 11.583(1) ?, β = 103.549(1)°, V = 1153.8(2) ?(3), R(F) = 0.0387 for I > 2σ(I); compound (2), monoclinic, C2/m, Z = 4, a = 14.874(4) ?, b = 7.271(2) ?, c = 6.758(2) ?, β = 112.005(4)°, V = 677.7(3) ?(3), R(F) = 0.0477 for I > 2σ(I).  相似文献   

6.
The highly luminescent bimetallic cyanide materials, Gd(terpy)(H(2)O)(NO(3))(2)M(CN)(2) (M = Au, Ag; GdAu and GdAg, respectively) are quick and easy to synthesize under ambient conditions. A characteristic feature exhibited by both solid-state compounds is an intense red emission when excited with UV light. Additionally, GdAu exhibits a broad-band green emission upon excitation in the near UV region. A combination of structural and spectroscopic results for the compounds helps explain the underlying conditions responsible for their unique properties. Single-crystal X-ray diffraction experiments expose their structural features, including the fact that they are isostructural. Crystallographic data for the representative GdAu compound (Mo K(α), λ = 0.71073 ?, T = 290 K): triclinic, space group P ?1, a = 7.5707(3) ?, b = 10.0671(4) ?, c = 15.1260(4) ?, α = 74.923(3)°, β = 78.151(3)°, γ = 88.401(3)°, V = 1089.04(7) ?(3), and Z = 2. Although the compounds crystallize as dimers containing M···M distances smaller than the sum of their van der Waals radii, the Au···Au (3.5054(4) ?) and/or the Ag···Ag (3.6553(5) ?) interactions are relatively weak and are not responsible for the low energy red emission. Rather, the green emission in GdAu presumably originates from the [Au(CN)(2)(-)](2) dimeric excimer, while the [Ag(CN)(2)(-)](2) dimers in GdAg do not display visible emission at either 290 or 77 K. The unusual red emission exhibited by both compounds likely originates from the formation of an excited state exciplex that involves intermolecular π-stacking of 2,2':6',2"-terpyridine ligands. The room-temperature and low-temperature steady-state photoluminescent properties, along with detailed time-dependent, lifetime, and quantum yield spectroscopic data provide evidence regarding the sources of the multiple visible emissions exhibited by these complexes.  相似文献   

7.
Five new vanadium selenites, Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), Sr(2)(VO(2))(2)(SeO(3))(3), Ba(V(2)O(5))(SeO(3)), Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), have been synthesized and characterized. Their crystal structures were determined by single crystal X-ray diffraction. The compounds exhibit one- or two-dimensional structures consisting of corner- and edge-shared VO(4), VO(5), VO(6), and SeO(3) polyhedra. Of the reported materials, A(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) (A = Sr(2+) or Pb(2+)) are noncentrosymmetric (NCS) and polar. Powder second-harmonic generation (SHG) measurements revealed SHG efficiencies of approximately 130 and 150 × α-SiO(2) for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Piezoelectric charge constants of 43 and 53 pm/V, and pyroelectric coefficients of -27 and -42 μC/m(2)·K at 70 °C were obtained for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Frequency dependent polarization measurements confirmed that the materials are not ferroelectric, that is, the observed polarization cannot be reversed. In addition, the lone-pair on the Se(4+) cation may be considered as stereo-active consistent with calculations. For all of the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed. Crystal data: Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), orthorhombic, space group Pnma (No. 62), a = 7.827(4) ?, b = 16.764(5) ?, c = 9.679(5) ?, V = 1270.1(9) ?(3), and Z = 4; Sr(2)(VO(2))(2)(SeO(3))(3), monoclinic, space group P2(1)/c (No. 12), a = 14.739(13) ?, b = 9.788(8) ?, c = 8.440(7) ?, β = 96.881(11)°, V = 1208.8(18) ?(3), and Z = 4; Ba(V(2)O(5))(SeO(3)), orthorhombic, space group Pnma (No. 62), a = 13.9287(7) ?, b = 5.3787(3) ?, c = 8.9853(5) ?, V = 673.16(6) ?(3), and Z = 4; Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.161(3) ?, b = 12.1579(15) ?, c = 12.8592(16) ?, V = 3933.7(8) ?(3), and Z = 8; Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.029(2) ?, b = 12.2147(10) ?, c = 13.0154(10) ?, V = 3979.1(6) ?(3), and Z = 8.  相似文献   

8.
Huang Q  Wu X  Wang Q  Sheng T  Lu J 《Inorganic chemistry》1996,35(4):893-897
Synthetic methods for [Et(4)N](4)[W(4)Cu(4)S(12)O(4)] (1), [Et(4)N](4)[Mo(4)Cu(4)S(12)O(4)] (2), [W(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (3), and [Mo(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (4) are described. [Et(4)N](2)[MS(4)], [Et(4)N](2)[MS(2)O(2)], Cu(NO(3))(2).3H(2)O, and KBH(4) (or Et(4)NBH(4)) were used as starting materials for the synthesis of 1 and 2. Compounds 3 and 4 were produced by reaction of [Et(4)N](2)[WOS(3)], Cu(NO(3))(2).3H(2)O, and TMEN and by reaction of [Me(4)N](2)[MO(2)O(2)S(8)], Cu(NO(3))(2).3H(2)O, and TMEN, respectively. Crystal structures of compounds 1-4 were determined. Compounds 1 and 2 crystallized in the monoclinic space group C2/c with a = 14.264(5) ?, b = 32.833(8) ?, c = 14.480(3) ?, beta = 118.66(2) degrees, V = 5950.8(5) ?(3), and Z = 4 for 1 and a = 14.288(5) ?, b = 32.937(10) ?, c = 14.490(3) ?, beta = 118.75(2) degrees, V = 5978.4(7) ?(3), and Z = 4 for 2. Compounds 3 and 4 crystallized in the trigonal space group P3(2)21 with a = 13.836(6) ?, c = 29.81(1) ?, V = 4942(4) ?(3), and Z = 3 for 3 and a = 13.756(9) ?, c = 29.80(2) ?, V = 4885(6) ?(3), and Z = 3 for 4. The cluster cores have approximate C(2v) symmetry. The anions of 1 and 2 may be viewed as consisting of two butterfly-type [CuMOS(3)Cu] fragments bridged by two [MOS(3)](2-) groups. Eight metal atoms in the anions are arranged in an approximate square configuration, with a Cu(4)M(4)S(12) ring structure. Compounds 3 and 4 can be considered to consist of one [M(4)Cu(4)S(12)O(4)](4-) (the anions of 1 and 2) unit capped by Cu(TMEN)(+) groups on each M atom; the Cu(TMEN)(+) groups extend alternately up and down around the Cu(4)M(4) square. The electronic spectra of the compounds are dominated by the internal transitions of the [MOS(3)](2-) moiety. (95)Mo NMR spectral data are investigated and compared with those of other compounds.  相似文献   

9.
Yu K  Zhou BB  Yu Y  Su ZH  Yang GY 《Inorganic chemistry》2011,50(5):1862-1867
A new layered molybdenum cobalt phosphate, Na(2)[Co(H(2)O)(6)][(Mo(16)O(32))Co(16)(PO(4))(4) (HPO(4))(16)(H(2)PO(4))(4)(OH)(4)(C(10)H(8)N(2))(4)(C(5)H(4)N)(2)(H(2)O)(6)]·4H(2)O (1), has been hydrothermally synthesized and structurally characterized. 1 crystallizes in the monoclinic space group P2(1)/n with a = 15.6825(18) ?, b = 39.503(4) ?, c = 17.2763(17) ?, β = 93.791(2)°, V = 10679.4(18) ?(3), and Z = 2. A polyoxoanion of 1 exhibits an unusual organic-inorganic hybrid wheel-type cluster, in which two pyridine ligands link to the surface Co(II) atoms of a [H(24)(Mo(16)O(32))Co(16)(PO(4))(24)(OH)(4)(H(2)O)(6)] (namely, {Mo(16)Co(16)P(24)}) wheel via the Co-N bonds. Furthermore, each {Mo(16)Co(16)P(24)} wheel is connected to four adjacent wheels by four pairs of 4,4'-bipyridine linkers, forming a 2D layered network. The susceptibility measurement shows the existence of dominant antiferromagnetic interactions in 1.  相似文献   

10.
A new polyoxomolybdate complex HNa7[Mo36O112(H2O)16]·47H2O 1 has been prepared in the beaker solution and characterized by single-crystal X-ray diffraction and elemental analyses. Crystal data: H127Mo36Na7O175, Mr = 6542.79, monoclinic, C2/c, a = 40.891(6), b =17.900(3), c = 25.580(4) (A), β = 125.673(2)°, V = 15210(4)(A)3, Z = 4, Dc = 2.857 g/cm3, F(000) =12464, μ = 3.013 mm-1, R = 0.0633 and wR = 0.1654 (I> 2σ(Ⅰ)). With the bridging sodium cations,the [Mo36O112(H2O)16]8- units in compound 1 are linked to form a one-dimensional structure, on the basis of which a three-dimensional architecture is further constructed via other sodium cations and complicated hydrogen bonds.  相似文献   

11.
The syntheses are reported for two novel Tb(3+) heterotrimetallic cyanometallates, K(2)[Tb(H(2)O)(4)(Pt(CN)(4))(2)]Au(CN)(2)·2H(2)O (1) and [Tb(C(10)N(2)H(8))(H(2)O)(4)(Pt(CN)(4))(Au(CN)(2))]·1.5C(10)N(2)H(8)·2H(2)O (2) (C(10)N(2)H(8) = 2,2'-bipyridine). Both compounds have been isolated as colorless crystals, and single-crystal X-ray diffraction has been used to investigate their structural features. Crystallographic data (MoKα, λ = 0.71073 ?, T = 290 K): 1, tetragonal, space group P4(2)/nnm, a = 11.9706(2) ?, c = 17.8224(3) ?, V = 2553.85(7) ?(3), Z = 4; 2, triclinic, space group P1, a = 10.0646(2) ?, b = 10.7649(2) ?, c = 17.6655(3) ?, α = 101.410(2)°, β = 92.067(2)°, γ = 91.196(2)°, V = 1874.14(6) ?(3), Z = 2. For the case of 1, the structure contains Au(2)Pt(4) hexameric noble metal clusters, while 2 includes Au(2)Pt(2) tetrameric clusters. The clusters are alike in that they contain Au-Au and Au-Pt, but not Pt-Pt, metallophilic interactions. Also, the discrete clusters are directly coordinated to Tb(3+) and sensitize its emission in both solid-state compounds, 1 and 2. The Photoluminescence (PL) spectra of 1 show broad excitation bands corresponding to donor groups when monitored at the Tb(3+) ion f-f transitions, which is typical of donor/acceptor energy transfer (ET) behavior in the system. The compound also displays a broad emission band at ~445 nm, assignable to a donor metal centered (MC) emission of the Au(2)Pt(4) clusters. The PL properties of 2 show a similar Tb(3+) emission in the visible region and a lack of donor-based emission at room temperature; however, at 77 K a weak, broad emission occurs at 400 nm, indicative of uncoordinated 2,2'-bipyridine, along with strong Tb(3+) transitions. The absolute quantum yield (QY) for the Tb(3+) emission ((5)D(4) → (7)F(J (J = 6-3))) in 1 is 16.3% with a lifetime of 616 μs when excited at 325 nm. In contrast the weak MC emission at 445 nm has a quantum yield of 0.9% with a significantly shorter lifetime of 0.61 μs. For 2 the QY value decreases to 9.3% with a slightly shorter lifetime of 562 μs. The reduced QY in 2 is considered to be a consequence of (1) the slightly increased donor-acceptor excited energy gap relative to the optimal gap suggested for Tb(3+) and (2) Tb(3+) emission quenching via a bpy ligand-to-metal charge transfer (LMCT) excited state.  相似文献   

12.
The new compounds Rb(3)(AlQ(2))(3)(GeQ(2))(7) [Q = S (1), Se (2)] feature the 3D anionic open framework [(AlQ(2))(3)(GeQ(2))(7)](3-) in which aluminum and germanium share tetrahedral coordination sites. Rb ions are located in channels formed by the connection of 8, 10, and 16 (Ge/Al)S(4) tetrahedra. The isostructural sulfur and selenium derivatives crystallize in the space group P2(1)/c. 1: a = 6.7537(3) ?, b = 37.7825(19) ?, c = 6.7515(3) ?, and β = 90.655(4)°. 2: a = 7.0580(5) ?, b = 39.419(2) ?, c = 7.0412(4) ?, β = 90.360(5)°, and Z = 2 at 190(2) K. The band gaps of the congruently melting chalcogenogermanates are 3.1 eV (1) and 2.4 eV (2).  相似文献   

13.
The reaction of an alkali metal aluminohydride MAlH4 (M = Li, Na) with N,N'-bis-(tert-butyl)sulfamide or N,N'-bis-(benzyl)sulfamide in THF produces the complex ions (Al[SO2(NR)2]2)- (R = tBu, Bn). The X-ray structures of [Li(THF)2(Al[SO2(NtBu)2]2)] infinity (1), [Na(15-crown-5)][Al(SO2(NtBu)2)2], (2) and ([Na(15-crown-5)][O2S(mu-NBn)2Al(mu-NBnSO2NBn)])2 (3.3THF) are reported. The two diazasulfate ligands [SO2(NtBu)2]2- are N,N' chelated to Al3+ in both 1 and 2. In the lithium derivative 1 the spirocyclic (Al[SO2(NtBu)2]2)- anions are bridged by the bis-solvated cations Li(THF)2+ to give a polymeric strand. In the sodium salt 2 the complex anion is O,O' chelated to Na+, which is further encapsulated by a 15-crown-5 ligand to give a monomeric ion-pair complex. By contrast, the benzyl derivative 3 forms a dimer in which the terminal [SO2(NBn)2]2- ligands are (N,N'),(O,O') bis-chelated to Al3+ and Na+, respectively, and the bridging ligands adopt a novel N,O-chelate, N'-monodentate bonding mode. The central core of 3 consists of two four-membered AlOSN rings bridged by two NtBu groups. Crystal data: 1, orthorhombic, Pna2(1), a = 20.159(5) degrees, b = 10.354(3) degrees, c = 15.833(4) degrees, alpha = beta = gamma = 90 degrees, V = 3304.7(15) A3, Z = 4; 2, monoclinic, P2(1)/n, a = 16.031(2) A, b = 9.907(2) A, c = 23.963(4) A, beta = 103.326(2) degrees, Z = 4; 3, triclinic, P1, a = 12.7237(11) A, b = 14.0108(13) A, c = 16.2050(14) A, alpha = 110.351(2) degrees, beta = 111.538(2) degrees, gamma = 97.350(2) degrees, Z = 1.  相似文献   

14.
Liu JW  Wang P  Chen L 《Inorganic chemistry》2011,50(12):5706-5713
Three semiconducting ternary sulfides have been synthesized from the mixture of elements with about 20% excess of sulfur (to establish oxidant rich conditions) by solid-state reactions at high temperature. Ba(12)In(4)S(19) ≡ (Ba(2+))(12)(In(3+))(4)(S(2-))(17)(S(2))(2-), 1, crystallizes in the trigonal space group R ?3 with a = 9.6182(5) ?, b = 9.6182(5) ?, c = 75.393(7) ?, and Z = 6, with a unique long period-stacking structure of a combination of monometallic InS(4) tetrahedra, linear dimeric In(2)S(7) tetrahedra, disulfide S(2)(2-) anions, and isolated sulfide S(2-) anions that is further enveloped by Ba(2+) cations. Ba(4)In(2)S(8) ≡ (Ba(2+))(4)(In(3+))(2)(S(2-))(6)(S(2))(2-), 2, crystallizes in the triclinic space group P ?1? with a = 6.236(2) ?, b = 10.014(4) ?, c = 13.033(5) ?, α = 104.236(6)°, β = 90.412(4)°, γ = 91.052(6)°, and Z = 2. Ba(4)Ga(2)S(8) ≡ (Ba(2+))(4)(Ga(3+))(2)(S(2-))(6)(S(2))(2-), 3, crystallizes in the monoclinic P2(1)/c with a = 12.739(5) ?, b = 6.201(2) ?, c = 19.830(8) ?, β = 104.254(6)° and Z = 4. Compounds 2 and 3 represent the first one-dimensional (1D) chain structure in ternary Ba/M/S (M = In, Ga) systems. The optical band gaps of 1 and 3 are measured to be around 2.55 eV, which agrees with their yellow color and the calculation results. The CASTEP calculations also reveal that the disulfide S(2)(2-) anions in 1-3 contribute mainly to the bottom of the conduction bands and the top of valence bands, and thus determine the band gaps.  相似文献   

15.
LIU Bin  ;YANG Bo-Lun 《结构化学》2009,28(9):1112-1120
In order to enhance the water-solubility and biological utilization rate of chrysin, sodium 5,7-dihydroxylflavone-8-sulfonate (1, [Na(H2O)1/2]X, X = C15H9OSO3, 5,7-dihydroxylfla- vone-8-sulfonate) was synthesized and its structure was identified on the basis of NMR, FT-IR and elemental analysis. The assembly of 5,7-dihydroxylflavone-8-sulfonate with diethylamide cation afforded diethylamide 5,7-dihydroxylflavone-8-sulfonate (2, NH2(CH2CH3)2X) which was characterized by FT-IR and elemental analysis. The crystal structures of 1 and 2 were determined by X-ray single-crystal diffraction analysis. The crystal of 1 is of triclinic system, space group P1, with a = 8.5628(13), b = 12.8916(19), c = 13.562(2) A, α = 82.494(1), β = 78.601(2), γ = 84.033(2)°, C30H20Na2O15S2, Z = 2, Mr = 730.59, V = 1450.3(4) A3, Dc = 1.673 g/cm3, F(000) = 748, p = 0.295 mm^-1, the final R = 0.0641 and wR = 0.1458. The crystal of 2 crystallizes in the triclinic system, space group Pi, with a = 7.689(2), b = 11.184(3), c = 11.734(3) A, α = 74.268(3), βl = 81.751(4), γ= 87.991(3)°, C19H21NO7S, Z = 2, Mr= 407.43, V= 961.2(4) A3, Dc = 1.408 g/cm3, F(000) = 428, p = 0.210 mm^-1, the final R = 0.0484 and wR = 0.1195. In 1, the three-dimensional structure is organized into organic and inorganic regions; the flavone skeletons are stacked into organic regions by π...π staeking interactions; inorganic regions are generated by Na-O coordination bonds among sulfonate groups, coordinated water molecules and NaI. The sulfonate groups play an important role as a bridge of inorganic and organic regions. One-dimensional chain structure of 2 is extended by N-H…O hydrogen bonds and π...π stacking interactions. Furthermore, the antioxidant activity of 1 was evaluated. The scavenging activity of 1 to DPPH free radical is better than that of the parent compound chrysin.  相似文献   

16.
A three-dimensional complex [Cu(3-ampy)(H2O)4](SO4)·(H2O) (3-ampy = 3-aminopyridine) has been synthesized. Crystallographic data: C5H16CuN2O9S, Mr = 343.80, triclinic, space group P, a = 7.675(2), b = 8.225(3), c = 10.845(3) (A), α= 86.996(4), β = 76.292(4),γ = 68.890(4)°, V = 620.0(3) (A)3, Z = 2, Dc = 1.841 g/cm3, F(000) = 354 and μ = 1.971 mm-1. The structure was refined to R = 0.0269 and wR = 0.0659 for 1838 observed reflections (I > 2σ(Ⅰ)). The structure consists of [Cu(3-ampy)(H2O)4]2 cations, SO42- anions and lattice water molecules. 3-Ampy acting as a bidentate bridging ligand generates a 1D covalent chain. A supramolecular 2D framework is formed through π-π stacking of pyridine rings. The lattice water molecules and SO42- anions are located between the adjacent 2D frameworks. The hydrogen bonding interactions from lattice water molecules and SO42- anions to coordinate water extend the 2D framework into a 3D network.  相似文献   

17.
An extensive series of radical salts formed by the organic donor bis(ethylenedithio)tetrathiafulvalene (ET), the paramagnetic tris(oxalato)ferrate(III) anion [Fe(C(2)O(4))(3)](3-), and halobenzene guest molecules has been synthesized and characterized. The change of the halogen atom in this series has allowed the study of the effect of the size and charge polarization on the crystal structures and physical properties while keeping the geometry of the guest molecule. The general formula of the salts is ET(4)[A(I)Fe(C(2)O(4))(3)]·G with A/G = H(3)O(+)/PhF (1); H(3)O(+)/PhCl (2); H(3)O(+)/PhBr (3), and K(+)/PhI (4), (crystal data at room temperature: (1) monoclinic, space group C2/c with a = 10.3123(2) ?, b = 20.0205(3) ?, c = 35.2732(4) ?, β = 92.511(2)°, V = 7275.4(2) ?(3), Z = 4; (2) monoclinic, space group C2/c with a = 10.2899(4) ?, b = 20.026(10) ?, c = 35.411(10) ?, β = 92.974°, V = 7287(4) ?(3), Z = 4; (3) monoclinic, space group C2/c with a = 10.2875(3) ?, b = 20.0546(15) ?, c = 35.513(2) ?, β = 93.238(5)°, V = 7315.0(7) ?(3), Z = 4; (4) monoclinic, space group C2/c with a = 10.2260(2) ?, b = 19.9234(2) ?, c = 35.9064(6) ?, β = 93.3664(6)°, V = 7302.83(18) ?(3), Z = 4). The crystal structures at 120 K evidence that compounds 1-3 undergo a structural transition to a lower symmetry phase when the temperature is lowered (crystal data at 120 K: (1) triclinic, space group P1 with a = 10.2595(3) ?, b = 11.1403(3) ?, c = 34.9516(9) ?, α = 89.149(2)°, β = 86.762(2)°, γ = 62.578(3)°, V = 3539.96(19) ?(3), Z = 2; (2) triclinic, space group P1 with a = 10.25276(14) ?, b = 11.15081(13) ?, c = 35.1363(5) ?, α = 89.0829(10)°, β = 86.5203(11)°, γ = 62.6678(13)°, V = 3561.65(8) ?(3), Z = 2; (3) triclinic, space group P1 with a = 10.25554(17) ?, b = 11.16966(18) ?, c = 35.1997(5) ?, α = 62.7251(16)°, β = 86.3083(12)°, γ = 62.7251(16)°, V = 3575.99(10) ?(3), Z = 2; (4) monoclinic, space group C2/c with a = 10.1637(3) ?, b = 19.7251(6) ?, c = 35.6405(11) ?, β = 93.895(3)°, V = 7128.7(4) ?(3), Z = 4). A detailed crystallographic study shows a change in the symmetry of the crystal for compound 3 at about 200 K. This structural transition arises from the partial ordering of some ethylene groups in the ET molecules and involves a slight movement of the halobenzene guest molecules (which occupy hexagonal cavities in the anionic layers) toward one of the adjacent organic layers, giving rise to two nonequivalent organic layers at 120 K (compared to only one at room temperature). The structural transition at about 200 K is also observed in the electrical properties of 1-3 and in the magnetic properties of 1. The direct current (dc) conductivity shows metallic behavior in salts 1-3 with superconducting transitions at about 4.0 and 1.0 K in salts 3 and 1, respectively. Salt 4 shows a semiconductor behavior in the temperature range 300-50 K with an activation energy of 64 meV. The magnetic measurements confirm the presence of high spin S = 5/2 [Fe(C(2)O(4))(3)](3-) isolated monomers together with a Pauli paramagnetism, typical of metals, in compounds 1-3. The magnetic properties can be very well reproduced in the whole temperature range with a simple model of isolated S = 5/2 ions with a zero field splitting plus a temperature independent paramagnetism (Nα) with the following parameters: g = 1.965, |D| = 0.31 cm(-1), and Nα = 1.5 × 10(-3) emu mol(-1) for 1, g = 2.024, |D| = 0.65 cm(-1), and Nα = 1.4 × 10(-3) emu mol(-1) for 2, and g = 2.001, |D| = 0.52 cm(-1), and Nα = 1.5 × 10(-3) emu mol(-1) for 3.  相似文献   

18.
The reaction of [AuCl(PR(3))] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] in refluxing ethanol proceeds with partial degradation (removal of a boron atom adjacent to carbon) of the closo species to give [Au{(PPh(2))(2)C(2)B(9)H(10)}(PR(3))] [PR(3) = PPh(3) (1), PPh(2)Me (2), PPh(2)(4-Me-C(6)H(4)) (3), P(4-Me-C(6)H(4))(3) (4), P(4-OMe-C(6)H(4))(3) (5)]. Similarly, the treatment of [Au(2)Cl(2)(&mgr;-P-P)] with [1,2-(Ph(2)P)(2)-1,2-C(2)B(10)H(10)] under the same conditions leads to the complexes [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-P-P)] [P-P = dppe = 1,2-bis(diphenylphosphino)ethane (6), dppp = 1,3-bis(diphenylphosphino)propane (7)], where the dppe or dppp ligands bridge two gold nido-diphosphine units. The reaction of 1 with NaH leads to removal of one proton, and further reaction with [Au(PPh(3))(tht)]ClO(4) gives the novel metallocarborane compound [Au(2){(PPh(2))(2)C(2)B(9)H(9)}(PPh(3))(2)] (8). The structure of complexes 1 and 7 have been established by X-ray diffraction. [Au{(PPh(2))(2)C(2)B(9)H(10)}(PPh(3))] (1) (dichloromethane solvate) crystallizes in the monoclinic space group P2(1)/c, with a = 17.326(3) ?, b = 20.688(3) ?, c = 13.442(2) ?, beta = 104.710(12) degrees, Z = 4, and T = -100 degrees C. [Au(2){(PPh(2))(2)C(2)B(9)H(10)}(2)(&mgr;-dppp)] (7) (acetone solvate) is triclinic, space group P&onemacr;, a = 13.432(3) ?, b = 18.888(3) ?, c = 20.021(3) ?, alpha = 78.56(2) degrees, beta = 72.02(2) degrees, gamma = 73.31(2) degrees, Z = 2, and T = -100 degrees C. In both complexes the gold atom exhibits trigonal planar geometry with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate(1-) acting as a chelating ligand.  相似文献   

19.
Reactivity of Tris(dialkylthiophosphinyl)phosphines – Crystal Structure of [Ag{O[P(S)Me2]2}2][AsF6] In contrast to tris(dialkylphosphoryl)phosphines the reaction of tris(dimethylthiophosphinyl)phosphine with transition metal hexafluoroarsenates of the type [M(SO2)m [AsF6]n (M = Ag, m = 0, n = 1; M = Fe, Cd, m = n = 2) forms no molecular 2 : 1-complexes but polymeric products. The silver polymer is transformed into [Ag{O[P(S)Me2]2}2][AsF6], which is also formed by the reaction of Ag[AsF6] with O[P(S)Me2]2. It crystallizes in the space group P1 with a = 862.5(2), b = 1 241.4(2), c = 1 254.0(3)pm, α = 80.34(1), β = 101.99(6), γ= 73.75(1)° (at 20°C) and Z = 2. The central silver atom is surrounded by four sulphur atoms in a slighly distorted tetrahedron. The average (Ag? S) and (P? S) bond lengthes are 259.4(2) pm and 194.9(2)pm, respectively.  相似文献   

20.
Two new noncentrosymmetric (NCS) polar oxide materials, Zn(2)(MoO(4))(AO(3)) (A = Se(4+) or Te(4+)), have been synthesized by hydrothermal and solid-state techniques. Their crystal structures have been determined, and characterization of their functional properties (second-harmonic generation, piezoelectricity, and polarization) has been performed. The isostructural materials exhibit a three-dimensional network consisting of ZnO(4), ZnO(6), MoO(4), and AO(3) polyhedra that share edges and corners. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation indicate the materials exhibit moderate SHG efficiencies of 100 × and 80 × α-SiO(2) for Zn(2)(MoO(4))(SeO(3)) and Zn(2)(MoO(4))(TeO(3)), respectively. Particle size vs SHG efficiency measurements indicate the materials are type 1 non-phase-matchable. Converse piezoelectric measurements resulted in d(33) values of ~14 and ~30 pm/V for Zn(2)(MoO(4))(SeO(3)) and Zn(2)(MoO(4))(TeO(3)), respectively, whereas pyroelectric measurements revealed coefficients of -0.31 and -0.64 μC/m(2) K at 55 °C for Zn(2)(MoO(4))(SeO(3)) and Zn(2)(MoO(4))(TeO(3)), respectively. Frequency-dependent polarization measurements confirmed that all of the materials are nonferroelectric; that is, the macroscopic polarization is not reversible, or "switchable". Infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were also performed. First-principles density functional theory (DFT) electronic structure calculations were also done. Crystal data: Zn(2)(MoO(4))(SeO(3)), monoclinic, space group P2(1) (No. 4), a = 5.1809(4) ?, b = 8.3238(7) ?, c = 7.1541(6) ?, β = 99.413(1)°, V = 305.2(1) ?(3), Z = 2; Zn(2)(MoO(4))(TeO(3)), monoclinic, space group P2(1) (No. 4), a = 5.178(4) ?, b = 8.409(6) ?, c = 7.241(5) ?, β = 99.351(8)°, V = 311.1(4) ?(3), Z = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号