首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have been developing corrugated quantum well infrared photodetector (C-QWIP) technology for long wavelength applications. A number of large format 1024 × 1024 C-QWIP focal plane arrays (FPAs) have been demonstrated. In this paper, we will provide a detailed analysis on the FPA performance in terms of quantum efficiency η and compare it with a detector model. We found excellent agreement between theory and experiment when both the material parameters and the pixel geometry were taken into account. By changing the number of quantum wells, doping density, spectral bandwidth and pixel size, a range of η from 13% to 37% was obtained. This range of η, combined with the wide spectral width, enables C-QWIPs to be operated at a high speed. For example, model analysis shows that a C-QWIP FPA with 10.7 μm cutoff and 25 μm pitch will have a thermal sensitivity of 16 mK at 2 ms integration time with f/2 optics in the presence of 900 readout noise electrons.  相似文献   

2.
Advancements in III–V semiconductor based, Quantum-well infrared photodetector (QWIP) and Type-II Strained-Layer Superlattice detector (T2SLS) technologies have yielded highly uniform, large-format long-wavelength infrared (LWIR) QWIP FPAs and high quantum efficiency (QE), small format, LWIR T2SLS FPAs. In this article, we have analyzed the QWIP and T2SLS detector level performance requirements and readout integrated circuit (ROIC) noise levels for several staring array long-wavelength infrared (LWIR) imaging applications at various background levels. As a result of lower absorption QE and less than unity photoconductive gain, QWIP FPAs are appropriate for high background tactical applications. However, if the application restricts the integration time, QWIP FPA performance may be limited by the read noise of the ROIC. Rapid progress in T2SLS detector material has already demonstrated LWIR detectors with sufficient performance for tactical applications and potential for strategic applications. However, significant research is needed to suppress surface leakage currents in order to reproduce performances at pixel levels of T2SLS FPAs.  相似文献   

3.
Recent results obtained on building blocks for future third generation infrared focal plane arrays (FPAs) are presented. Our approach concerning the FPA performance assessment and small pixels modelling is exposed. We also demonstrate the ability of the quantum well infrared photodetector technology to answer the needs for compact (20 μm pitch) polarimetric FPAs. Finally, we present our first results on mid-wave infrared detectors at wavelengths below 4.2 μm.  相似文献   

4.
We have exploited the artificial atom-like properties of epitaxially grown self-assembled quantum dots (QDs) for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays (FPAs). QD infrared photodetectors (QDIPs) are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II–VI material based FPAs. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR dot-in-a-well (DWELL) structures based on the InAs/InGaAs/GaAs material system. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. DWELL QDIPs were also experimentally shown to absorb both 45° and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. The most recent devices exhibit peak responsivity out to 8.1 μm. Peak detectivity of the 8.1 μm devices has reached 1 × 1010 Jones at 77 K. Furthermore, we have fabricated the first long-wavelength 640 × 512 pixels QDIP imaging FPA. This QDIP FPA has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60 K operating temperature.  相似文献   

5.
We have demonstrated the use of bulk antimonide based materials and type-II antimonide based superlattices in the development of large area mid-wavelength infrared (MWIR) focal plane arrays (FPAs). Barrier infrared photodetectors (BIRDs) and superlattice-based infrared photodetectors are expected to outperform traditional III–V MWIR and LWIR imaging technologies and are expected to offer significant advantages over II–VI material based FPAs. We have used molecular beam epitaxy (MBE) technology to grow InAs/GaSb superlattice pin photodiodes and bulk InAsSb structures on GaSb substrates. The coupled quantum well superlattice device offers additional control in wavelength tuning via quantum well sizes and interface composition, while the BIRD structure allows for device fabrication without additional passivation. As a demonstration of the large area imaging capabilities of this technology, we have fabricated mid-wavelength 1024 × 1024 pixels superlattice imaging FPAs and 640 × 512 MWIR arrays based on the BIRD concept. These initial FPA have produced excellent infrared imagery.  相似文献   

6.
Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024 × 1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEΔT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEΔT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In addition, we have demonstrated MWIR and LWIR pixel co-registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency, NEΔT, uniformity, operability, and modulation transfer functions of the 1024 × 1024 pixel arrays and the progress of dualband QWIP focal plane array development work.  相似文献   

7.
The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments’ results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors’ performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.  相似文献   

8.
Third generation thermal imagers with dual/multi-band operation capability are the prominent focus of the current research in the field of infrared detection. Dual band quantum-well infrared photodetector (QWIP) focal plane arrays (FPAs) based on various detection and fabrication approaches have been reported. One of these approaches is the three-contact design allowing simultaneous integration of the signals in both bands. However, this approach requires three In bumps on each pixel leading to a complicated fabrication process and lower fill factor.If the spectral response of a two-stack QWIP structure can effectively be shifted between two spectral bands with the applied bias, dual band sensors can be implemented with the conventional FPA fabrication process requiring only one In bump on each pixel making it possible to fabricate large format dual band FPAs at the cost and yield of single band detectors. While some disadvantages of this technique have been discussed in the literature, the detailed assessment of this approach has not been performed at the FPA level yet. We report the characteristics of a large format (640 × 512) voltage tunable dual-band QWIP FPA constructed through series connection of MWIR AlGaAs–InGaAs and LWIR AlGaAs–GaAs multi-quantum well stacks, and provide a detailed assessment of the potential of this approach at both pixel and FPA levels. The dual band FPA having MWIR and LWIR cut-off wavelengths of 5.1 and 8.9 μm provided noise equivalent temperature differences as low as 14 and 31 mK (f/1.5) with switching voltages within the limits applicable by commercial read-out integrated circuits. The results demonstrate the promise of the approach for achieving large format low cost dual band FPAs.  相似文献   

9.
In the remarkably short span of 2 years, longwave infrared focal plane arrays (FPAs) of Type-II InAs/GaSb strained layer superlattice (SLS) photodiodes have advanced from 320 × 256 format to 1024 × 1024 format while simultaneously shrinking the pitch from 30 μm to 18 μm. Despite a dark current that is presently higher than state-of-the-art mercury cadmium telluride photodiodes with the same ∼10 μm cutoff wavelength, the high pixel operability and high (∼50%) quantum efficiency of SLS FPAs enable excellent imagery with temporal noise equivalent temperature difference better than 30 mK with F/4 optics, integration time less than 1 ms, and operating temperature of 77 K or colder. We present current FPA performance of this promising sensor technology.  相似文献   

10.
FLIR Systems, Inc. has designed and fabricated the ISC0501 CMOS readout integrated circuit (ROIC) for quantum well infrared photodetectors (QWIPs). The ISC0501 is a two-color 1024 × 1024 format array with a 30 μm pixel pitch. The ROIC contains a separate analog signal path for each wavelength band. Separate signal paths allow the two-colors to have optimized detector biases, integration times, offsets and gains. This architecture also allows both colors to simultaneously sample a scene and readout the pixel data. This paper will describe the interface, design and features of the ROIC as well as a summary of the characterization test results. A sample image is included from a focal plane array (FPA) built by the Jet Propulsion Laboratory (JPL) using the ISC0501 ROIC with QWIP detectors designed by JPL.  相似文献   

11.
Hyperspectral applications that employ gratings typically exploit only one grating order, since other orders that emerge from the grating at the same angle of dispersion would corrupt the spectrum measured with conventional FPAs. Previously, dualband infrared focal plane arrays (FPA), developed for multi-spectral imaging applications, have demonstrated advantages over conventional multi-FPA sensor configurations in compactness and band-to-band pixel registration. In addition, dualband and multiband FPA architectures of Quantum Structure Infrared Photodetector (QSIP) technology would enable applications beyond simple multi-spectral imaging. For example, In the case of dual- (or multi-) waveband FPAs, the different grating orders can be paired with the FPA wavebands, allowing high efficiency hyperspectral imaging over very broad wavelength regions. Exploiting the “third dimension” of FPA detecting layers for this type of hyperspectral application has been demonstrated previously. As time progresses, multi-waveband FPAs are expected to provide an increase in spectral information at the pixel level without the need for external (e.g. dispersive) optical elements. As the number of wavebands increases to the point of providing spectral overlap of adjacent spectral resolution elements, hyperspectral capability is then achieved by the FPA acting alone. This technology may someday become possible through advanced QSIP architectures having photons of different wavelength continuously absorbed at different depths, and their resulting photocurrents isolated with a vertical grid of contacts or an equivalent mechanism for transporting depth-dependent signal photocurrent to a read-out circuit unit cell.  相似文献   

12.
程腾  张青川  陈大鹏  史海涛  高杰  钱剑  伍小平 《中国物理 B》2010,19(1):10701-010701
We propose a substrate-free focal plane array (FPA) in this paper. The solid substrate is completely removed, and the microcantilevers extend from a supporting frame. Using finite element analysis, the thermal and mechanical characterizations of the substrate-free FPA are presented. Because of the large decrease in thermal conductance, the supporting frame is temperature dependent, which brings out a unique feature: the lower the thermal conductance of the supporting frame is, the higher the energy conversion efficiency in the substrate-free FPA will be. The results from the finite element analyses are consistent with our measurements: two types of substrate-free FPAs with pixel sizes of 200× 200 and 60× 60~μ m2 are implemented in the proposed infrared detector. The noise equivalent temperature difference (NETD) values are experimentally measured to be 520 and 300~mK respectively. Further refinements are considered in various aspects, and the substrate-free FPA with a pixel size of 30× 30~μ m2 has a potential of achieving an NETD value of 10~mK.  相似文献   

13.
Four-band quantum well infrared photodetector array   总被引:4,自引:0,他引:4  
A four-band quantum well infrared photodetector (QWIP) focal plane array (FPA) has been demonstrated by stacking different multi-quantum well structures, which are sensitive in 4–5.5, 8.5–10, 10–12, and 13–15.5 μm infrared bands. This 640 × 514 format FPA consists of four 640 × 128 pixel areas which are capable of acquiring images in these infrared bands. In this application, instead of quarter wevelength groove depth grating reflectors, three-quarter wavelength groove depth reflectors were used to couple radiation to each QWIP layer. This technique allows us to optimize the light coupling to each QWIP stack at corresponding pixels while keeping the pixel (or mesa) height at the same level, which will be essential for indium bump-bonding with the multiplexer. In addition to light coupling, these gratings serve as a contact to the active stack while shorting the unwanted stacks. Flexible QWIP design parameters, such as well width, barrier thickness, doping density, and the number of periods, were cleverly exploited to optimize the performance of each detector while accommodating requirements set by the deep groove light coupling gratings. For imaging, detector array is operated at temperature T=45 K, and each detector shows a very high D*>1×1011 cm  /W for 300 K background with f/2 optics. This initial array gave excellent images with 99.9% of the pixels working, demonstrating the high yield of GaAs technology.  相似文献   

14.
搭建了一套适用于短波红外焦平面的相对响应光谱自动测试系统。系统测试程序在LabVIEW虚拟仪器开发环境下完成,具备光栅单色仪的控制、数据采集处理与存储等功能。系统采用单光路标准代替法实现了相对响应光谱的校准。测试了InGaAs短波红外线列焦平面,得到了每个像元校准后的相对响应光谱,提取了峰值波长、截止波长等参数在线列上的分布情况,实现了对焦平面全像元的相对响应光谱测试。  相似文献   

15.
Type-II InAs/GaSb superlattice detectors and focal plane arrays (FPAs) with cut-off wavelength at 5.1 μm have been studied. For single pixel devices, dark current densities of 1 × 10−6 A/cm2 and quantum efficiencies of 53% were measured at 120 K. From statistics of manufactured FPAs, an average FPA operability of 99.87% was observed. Furthermore, average temporal and spatial noise equivalent temperature difference (NETD) values of 12 mK and 4 mK, respectively, were deduced. Excellent stability of FPAs after non-uniformity correction was observed with no deterioration of the ratio between spatial and temporal noise during a two hour long measurement. Also after several cooldowns the ratio between spatial and temporal NETD stayed below 0.6.  相似文献   

16.
利用提出的光学读出非制冷红外成像系统,先后制作了单元尺寸各不相同的单层膜无基底焦平面阵列(focal plane array,FPA),获得了室温物体的热图像.分析发现,当FPA的单元尺寸从200μm逐渐减小到60μm时,基于恒温基底模型的理论响应与实验结果的偏差逐渐增大.通过有限元分析方法,模拟分析了不同尺寸的微梁单元在无基底FPA中的热学行为,发现了当单元尺寸逐渐减小时恒温基底模型偏差逐渐增大的原因,即无基底FPA的支撑框架不满足恒温基底条件,受热辐射后支撑框架的温升从基底上抬高了单元的温升.论文还分 关键词: 光学读出 非制冷红外成像 焦平面阵列 无基底  相似文献   

17.
Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this paper we will discuss the detail MTF measurements of a 1024 × 1024 pixel multi-band quantum well infrared photodetector and 320 × 256 pixel long-wavelength InAs/GaSb superlattice infrared focal plane arrays.  相似文献   

18.
Limiting the defect-mediated dark currents in type-II superlattice (T2SL) IR photodiodes remains the key challenge to focal plane arrays (FPAs) based on this material system. In spite of its larger effective mass to suppress tunneling and more than an order of magnitude longer Auger lifetime, the T2SL photodiode performance still lags behind that of the incumbent HgCdTe-based technology. The tunneling and generation–recombination currents can be strongly suppressed by employing a “W” T2SL structure and gradually increasing the energy gap in the depletion region. For maximum quantum efficiency, this graded-gap geometry is combined in a hybrid structure with two-constituent T2SL absorbers that exhibit roughly twice the diffusion length of the “W” structure. Finally, if the etch used to isolate neighboring pixels is stopped just beyond the junction in the graded-gap device, narrow-gap regions are not exposed and the total sidewall area is reduced by a factor of 20. We have combined all of these approaches to produce a 10.5 μm cutoff FPA with diffusion-limited performance and noise-equivalent differential temperature (NEDT) of 35 mK at 70 K.  相似文献   

19.
实时激光三维成像焦平面阵列研究进展   总被引:1,自引:0,他引:1  
王飞 《中国光学》2013,6(3):297-305
研究了应用于实时激光三维成像的焦平面阵列技术,介绍了目前国际上几种常用的焦平面阵列实现原理与技术特点,并对其优点与不足进行了分析,同时对表征焦平面阵列的主要性能指标以及其对最终成像系统的影响进行了定性分析。根据对现有技术的对比分析,提出基于雪崩光电二极管(APD)阵列和读出电路(ROIC)集成的探测器方案在灵敏度和作用距离等方面具有一定优势,是实现实时三维成像焦平面阵列较为理想的技术。作者认为在未来十几年内,激光三维成像焦平面阵列规模有望超过1 024 pixel×1 024 pixel,像元尺寸可降低到15μm。  相似文献   

20.
A 9 μm cutoff 640 × 512 pixel hand-held quantum well infrared photodetector (QWIP) camera has been demonstrated with excellent imagery. A noise equivalent differential temperature (NEDT) of 10.6 mK is expected at a 65 K operating temperature with f/2 optics at a 300 K background. This focal plane array has shown background limited performance at a 72 K operating temperature with the same optics and background conditions. In this paper, we discuss the development of this very sensitive long-wavelength infrared camera based on a GaAs/AlGaAs QWIP focal plane array and its performance in quantum efficiency, NEDT, uniformity, and operability. In the second section of this paper, we discuss the first demonstration of a monolithic spatially separated four-band 640 × 512 pixel QWIP focal plane array and its performance. The four spectral bands cover 4–5.5, 8.5–10, 10–12, and 13.5–15 μm spectral regions with 640 × 128 pixels in each band. In the last section, we discuss the array performance of a 640 × 512 pixel broad-band (10–16 μm full-width at half-maximum) QWIP focal plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号