首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Automatic SPE has been coupled on-line to CE by a transfer tube and the replenishment system of the CE instrument. The approach allows the target analytes (viz. creatinine, creatine, xanthine, hypoxanthine, uric acid, p-aminohippuric acid and ascorbic acid in urine samples) to be removed from the sample matrix, cleaned up, preconcentrated and injected into the capillary. The detection limits range between 0.14 and 4.50 microg/mL, the quantification limits between 0.45 and 15.0 microg/mL, and linear dynamic ranges - which include the reference healthy human values - from the quantification limits to 1332 microg/mL. The precision, expressed as RSD, ranges between 0.38 and 2.22% for repeatability and between 1.79 and 7.61% for within-laboratory reproducibility. The errors, expressed as RSD for all compounds, range between 0.20 and 6.90%. The time for automatic SPE and that necessary for the individual separation-detection of the target analytes are 13 and 12 min, respectively; the analysis frequency is 5 h(-1). The accuracy of the method and potential matrix effects were studied by using spiked samples and recoveries between 96.00 and 103.07 % were obtained. The proposed method was applied to samples from healthy young students.  相似文献   

2.
Pervaporation has been coupled on-line to capillary electrophoresis (CE) by a flow injection manifold and the replenishment system of the CE instrument. The approach allows volatile analytes to be removed, derivatisated and injected into the capillary meanwhile the sample matrix remains in the pervaporator. Acetone and four aldehydes (namely: formaldehyde, acetaldehyde, hexenal, 2-trans-hexenal) have been simultaneously determined in slurries samples by this approach. The detection limits (LOD) ranged between 0.1 and 0.6 microg/ml, the quantification limits between 0.5 and 2.0 microg/ml and the linear dynamic ranges between the limit of quantitation and 150 microg/ml. The precision, expressed as relative standard deviation (RSD), ranged between 0.76 and 4.21% for repeatability and between 1.12 and 4.78% for within laboratory intermediary precision. The errors involved in the analysis of the target analytes--expressed as RSD for all compounds--ranged between 0.13 and 4.87%. The optimal pervaporation time and that necessary for the individual separation/detection of the target analytes are 15 and 10 min, respectively. The analysis frequency is 4 h(-1). The accuracy of the method and potential matrix effects were established by analysing spiked samples. Recoveries between 96.12 and 105.67% were obtained. The proposed method was applied to 10 samples with different solid contents (namely, such yoghurt, juice and yoghurt-juice mixtures).  相似文献   

3.
A method was validated for the determination of the 2 main components of bee venom, phospholipase A2 and melittin, by capillary electrophesis (CE). Optimum resolution and selectivity were attained with a running electrolyte of 150 mM phosphoric acid, pH 1.8. The repeatability and day-to-day reproducibility of the migration times were better than 0.36 and 2.8%, respectively. The repeatability and day-to-day reproducibility of the normalized peak areas were better than 1.3 and 2.6%, respectively. The response of the UV detector at 190 nm was linear over < 2 concentration decades, from 0.05 to 1.5 mg/mL, with correlation coefficients of 0.9994 for phospholipase A2 and 0.9997 for melittin. The limits of detection and quantitation were 4.5 and 15 microg/mL, respectively, for phospholipase A2 and 1.6 and 6 microg/mL, respectively, for melittin. The reproducibility of the measurements with 2 different CE instruments was satisfactory; the mean concentration and relative standard deviation (RSD) values for phospholipase A2 and melittin were 14.4% (RSD, 1.3%) and 51.4% (RSD, 1.1%), respectively, with instrument I; the corresponding values with instrument II were 14.5% (RSD, 2.8%) and 52.3% (RSD, 2.2%). The accuracy was estimated by comparison with a liquid chromatographic (LC) method. Differences between the CE and LC measurements were attributed to irreversible adsorption of the analytes on the LC column. The recoveries of phospholipase A2 and melittin with the CE method were 98.8 and 101.7%, respectively.  相似文献   

4.
The analysis is described for separating seven beta-adrenergic blocking agents (atenolol, celiprolol, clorprenaline, fenoterol, metoprolol, propranolol, terbutaline) and clenbuterol (sympathomimetic beta-2 receptor stimulating agonist, decongestant and bronchodilator, illicit anabolic used in athletics) by CE with UV detection. In order to simultaneously separate all analytes, Tris-H3PO4 solution was applied containing titanium dioxide nanoparticles (TiO2 NPs) as BGEs. The effects of important factors, such as concentration of TiO2 NPs, optimum pH, run buffer concentration, and separation voltage, were investigated so as to achieve best CE separation. The eight analytes could be well separated applying a separation voltage of 15 kV in 75 mM Tris-H3PO4 buffer at a pH of 2.40, containing 6.0 x 10(-6) g/mL TiO2 NPs. Under these optimal conditions, the RSDs for peak areas and for migration times were less than 2.7 and 2.3%, respectively. The detection limits were 0.1 microg/mL for celiprolol, 0.1 microg/mL for propranolol, 0.2 microg/mL for fenoterol, 1.0 microg/mL for atenolol, 1.0 microg/mL for clenbuterol, 1.0 microg/mL for clorprenaline, 1.0 microg/mL for metoprolol, and 1.0 microg/mL for terbutaline. The proposed method was successfully applied for the rapid CE determination of the frequently applied antihypertensive beta-blocking compounds atenolol, metoprolol, terbutaline, and propranolol in pharmaceutical tablets.  相似文献   

5.
A validated analytical method using headspace capillary gas chromatography with mass spectrometric detection, which utilises deuterated analogues of the target analytes as internal standards has been developed and applied to the determination of acetone and diethyl ether in Tween extracts of cockles (Cerastoderma edule) and mussels (Mytilus edulis) destined for mouse bioassay for lipophilic toxins. The optimal conditions for headspace incubation were 50 degrees C for 6 min. The limits of detection and quantitation for both DEE and acetone were 2 and 7 microg/mL, respectively, based on signal to noise ratios of 3 and 10, respectively. The linear dynamic range of the instrument was 0 to ca. 4000 microg/mL for both acetone (r(2)=0.995) and DEE (r(2)=0.999). Tween extracts of cockle spiked with acetone and DEE at 3925 and 3570 microg/mL, respectively, gave mean (n=3) recovery figures of 101% (RSD=13.1%) for acetone and 90% (RSD=7.3%) for DEE in cockle matrix. The corresponding figures obtained from spiked mussel matrix were 114% (RSD=5.7%) for acetone and 95% (RSD=6.7%) for DEE, respectively, which were within acceptable range.  相似文献   

6.
An electrophoretic method for the simultaneous separation and determination of cationic and anionic surfactants based on double electrokinetic injection from the two ends of the capillary is proposed here. Nonaqueous capillary electrophoresis (NACE) with methanol as solvent was used to reduce the electroosmotic flow so that under these conditions the analytes migrate toward the corresponding electrode. The optimization step was the key to solve the problems associated with surfactants analysis (namely, adsorption on the capillary wall, micelle formation, and those issues related to the separation of homologous compounds). Good results were obtained with the proposed method both for the analysis of both spiked and natural samples, thus demonstrating the applicability of the proposed method for routine analysis. Finally, a comparison between the proposed method and two methods for independent analysis of cationic and anionic surfactants was made. The results showed that the precision (between 1.90 and 4.10% for repeatability and 7.43 and 8.98% for within-laboratory reproducibility, both expressed as relative standard deviation) and sensitivity (limits of detection and quantification between 0.52 and 1.88 microg/mL and between 1.73 and 6.20 microg/mL, respectively) are not affected by the CE mode. The resolution was similar to or better than that of the comparison methods and the analysis time was considerably shortened as both types of compounds were determined in a single run in only 9 min.  相似文献   

7.
A hyphenated technique was developed for high-throughput speciation analysis by on-line coupling of flow injection (FI), miniaturized capillary electrophoresis (CE) and atomic fluorescence spectrometry (AFS). Two interfaces were used to couple all three systems: the first to couple FI and CE and the second to couple miniaturized CE and AFS. The first interface was a modified flow through chamber, connected to the FI valve with a piece of PTFE tube (0.1mm i.d.x 20 cm long). The capillary outlet was coupled to the AFS by using the second concentric "tube-in-tube" interface. Split sampling was achieved in the electrokinetic mode. Inorganic mercury (Hg(II)) and methylmercury (MeHg(I)) were taken as model analytes to demonstrate the performance of the developed hyphenated technique. A volatile species generation (VSG) technique was employed to convert the analytes from the CE effluent into their respective volatile species. Baseline separation of Hg(II) and MeHg(I) was achieved by CE in a 50 microm i.d.x 8 cm long capillary at 3.0 kV within 60s. The precisions (RSD, n=12) were in the range of 0.7-0.9% for migration time, 3.8-4.2% for peak area, and 2.1-3.5% for peak height. The detection limits were 0.1 and 0.2 microgmL(-1) (as Hg) for Hg(II) and MeHg(I) with a sample throughput of 60 samples h(-1). The recoveries of both mercury species in the water samples studied were in the range of 93-106%.  相似文献   

8.
A method for the determination of cyclamate in food was developed using solid-phase extraction (SPE) and capillary electrophoresis (CE) with indirect ultraviolet (UV) detection. A 5-10 g sample in 0.1 mol/L hydrochloric acid was homogenized and made up to a volume of 50 mL with 0.1 mol/L hydrochloric acid. After the sample was centrifuged, 25 mL of supernatant was loaded into an Oasis HLB SPE cartridge. The cartridge was washed with 2 mL of demineralized water followed by 2 mL of 50% aqueous methanol, and cyclamate was eluted with 4.5 mL of 50% aqueous methanol. The eluate was added to a solution of sodium propionate (internal standard) for CE analysis. The cyclamate in the eluate was electrophoresed on a fused-silica capillary using 1 mmol/L hexadecyltrimethylammonium bromide and 10 mmol/L potassium sorbate as a running buffer. Detection and reference wavelengths of cyclamate determined with a UV detector were 300 and 254 nm, respectively. The calibration curves for cyclamate showed good linearity in the range of 2-1000 microg/mL and the limits of detection in beverage, fruit in syrup, jam, pickles and confectionary are sample dependent and ranged from 5-10 microg/g. The recovery of cyclamate added at a level of 200 microg/g to various kinds of foods was 93.3-108.3% and the relative standard deviation was less than 4.9% (n=3). A number of commercial samples were analyzed using the proposed method. Cyclamate was detected in one waume, two pickles, and two sunflower seeds. The quantitative values determined with CE correlated to those from high-performance liquid chromatography (HPLC) (the detected values of cyclamate in a sunflower seed measured by CE and HPLC were 3.40 g/kg and 3.51 g/kg, respectively). This analytical method for cyclamate using CE is especially suitable for use in the field.  相似文献   

9.
For the first time, a capillary electrophoretic (CE) method with sample stacking induced by a reverse migrating pseudostationary phase (SRMP) technique has been developed and validated for sensitive determination of phenobarbital (PB) and its p-hydroxyphenobarbital (PHPB) metabolite in rat urine samples. Separation and determination were optimized on a fused-silica capillary with a total length of 50 cm (effective length 40 cm) and 75 μm ID. The microemulsion background electrolyte consisted of 0.8% (v/v) ethyl acetate, 6.6% (v/v) butan-2-ol, 1.0% (v/v) acetonitrile, 2.0% (w/v) sodium n-dodecyl sulfate (SDS), and 89.6% (v/v) of 7.5 mM ammonium formate at pH 8. When this preconcentration technique was used, the sample stacking and the separation processes took place successively with changing the voltage with an intermediate polarity switching step. For practical application, a solid-phase extraction (SPE), C(18) sorbent with n-hexane/ethyl acetate (1?:?1%, v/v) as the elution solvent was used for sample purification and concentration. The SPE method gave good extraction yields for all the analytes, with absolute recovery values of 96.9% and 99.1% for PB and PHPB, respectively. The regression equations for PB and PHPB showed excellent linearity over a concentration range of 55-1386 ng mL(-1) for PB and PHPB (r = 0.998). The developed microemulsion electrokinetic capillary chromatography (MEEKC) method for separation of the studied compounds with SRMP as the electrophoretic preconcentration technique allowed detection limits in urine samples at 16.8 ng mL(-1) for PB and PHPB which are 15-fold lower than the reported CE method in the literature. The precision results, expressed by the intra-day and inter-day relative standard deviation (RSD) values range from 3.6 to 7.1% (repeatability) and from 3.2 to 7.2% (intermediate precision) for PB and PHPB, respectively, which were in line with Food and Drug Administration (FDA) criteria.  相似文献   

10.
Fung YF  Lau KM 《Electrophoresis》2001,22(11):2192-2200
A new analytical procedure is developed using a strong complexing agent, 1,10-phenanthroline (Phen), for direct UV detection of Zn, Mn, Cu, Co, Cd, and Fe at microg/L concentrations in environmental water samples. The metal chelates formed showed different electrophoretic mobilities and solved the comigration problem for capillary electrophoresis (CE) separation of free metal ions. To obtain stable metal-Phen chelates during the capillary zone electrophoresis (CZE) run, both pre-column and on-column complexation are required and threefold excess of Phen over metal ions should be added to the sample. The optimized background electrolyte (BGE) consists of 30 mM hydroxylamine hydrochloride and 0.1% methanol at pH 3.6. Under hydrodynamic sampling, CE run at + 20 kV in 65 cm x 0.05 mm ID fused-silica column with detection at 265 nm, baseline separation, satisfactory working ranges (10 microg/L to 5.5 mg/L), sensitive detection limits (1-3 microg/L), good repeatability for migration times (relative standard deviation, RSD 0.36-0.81%, n = 5), peak area (RSD 3.2-4.2%, n = 5) and peak height (RSD 3.2-4.5%, n = 5) were obtained for the metal cations investigated. The reliability of the method was established by parallel determination using the inductively coupled plasma-atomic emission spectrometry (ICP-AES) method giving results within statistical variation. The procedure developed is shown to provide a quick, sensitive, precise, and economic method for simultaneous determination of metal cations that can form stable chelates with Phen.  相似文献   

11.
顶空气相色谱法测定杏脯中二氧化硫   总被引:2,自引:0,他引:2  
建立顶空气相色谱测定杏脯中二氧化硫残留的方法,探讨了气液体积比、加酸量、平衡温度和平衡时间对检测结果的影响。向450 mL顶空瓶内加入5 g样品、10 g石蜡、200 mL水及25 mL盐酸溶液,于75℃平衡20 min后放至室温,抽取0.5 mL顶空气体进行定性定量分析检测。该方法标准工作曲线线性相关系数r~2为0.992,检出限和定量限分别为0.1,1.0 mg/kg,测定结果的相对标准偏差为1.9%~3.2%(n=6),样品加标回收率为89.4%~94.3%。该法操作简便、快捷,灵敏度高,人为误差小,满足杏脯中二氧化硫残留的批量检测要求。  相似文献   

12.
《Analytical letters》2012,45(18):2853-2867
Abstract

A capillary electrophoresis method with large volume sample stacking (CE-LVSS) has been developed and validated for the simultaneous determination of seven phenolic compounds: naringin, rutin, carnosic acid, apigenin, quercetin, morin, and chichoric acid. Optimization was carried out by response surface methodology and a set of 20 experiments helped to optimize the parameters such as the concentration of buffer, buffer pH, and applied voltage. Analytes were separated using a 50?µm diameter capillary with 56?cm effective length and an extended light path using 20?mM borate buffer at pH 9.2. The LVSS method was optimized and a three- to fivefold improvement in detectability was achieved with injection at 100 mbar for 20?s followed by polarity switching at –20?kV for 6?s. The linearity values of all seven analytes were observed in the concentration ranges from 0.5 to 50?µg/mL for CE and 0.1 to 25?µg/mL for LVSS. The limits of detection were from 0.012 to 0.241 and 0.003 to 0.086?µg/mL for CE and LVSS. The obtained limits of quantitation were within 0.041 to 0.802 for CE and 0.012 to 0.286?µg/mL for LVSS. The recoveries were between 91.1 and 109.8% and 96.3 and 108.4% for CE and LVSS, respectively. The developed method has been successfully applied for the quantitative determination of analyzed components from food samples that are important sources of these compounds.  相似文献   

13.
The fast separation capability of a novel miniaturized capillary electrophoresis with amperometric detection (CE-AD) system was demonstrated by determining sugar contents in Coke and diet Coke with an estimated separation efficiency of 60,000 TP/m. Factors influencing the separation and detection processes were examined and optimized. The end-capillary 300 microm Cu wire amperometric detector offers favorable signal-to-noise characteristics at a relatively low potential (+0.50 V vs. Ag/AgCl) for detecting sugars. Three sugars (sucrose, glucose, and fructose) have been separated within 330 s in a 8.5 cm length capillary at a separation voltage of 1000 V using a 50 mM NaOH running buffer (pH 12.7). Highly linear response is obtained for the above compounds over the range of 5.0 to 2.0 x 10(2) microg/mL with low detection limit, down to 0.8 microg/mL for glucose (S/N = 3). The injection-to-injection repeatability for analytes in peak current (RSD < 3.6%) and for migration times (RSD < 1.4%) was excellent. The new miniaturized CE-AD system should find a wide range of analytical applications involving assays of carbohydrates as an alternative to conventional CE and micro-CE.  相似文献   

14.
An analytical technique of in-line coupling headspace liquid-phase microextraction (HS-LPME) with capillary electrophoresis (CE) was proposed to determine volatile analytes. A special cover unit of the sample vial was adopted in the coupling method. To evaluate the proposed method, phenols were used as model analytes. The parameters affecting the extraction efficiency were investigated, including the configuration of acceptor phase, kind and concentration of acceptor solution, extraction temperature and time, salt-out effect, sample volume, etc. The optimal enrichment factors of HS-LPME were obtained with the sample volume of about half of sample vials, which were confirmed by both the theoretical prediction and experimental results. The enrichment factors were obtained from 520 to 1270. The limits of detection (LODs, S/N = 3) were in the range from 0.5 to 1 ng/mL each phenol. The recoveries were from 87.2% to 92.7% and the relative standard deviations (RSDs) were lower than 5.7% (n = 6). The proposed method was successfully applied to the quantitative analysis of the phenols in tap water, and proved to be a simple, convenient and reliable sample preconcentration and determination method for volatile analytes in water samples.  相似文献   

15.
Zhang LH  Zhang CJ  Chen X  Feng YQ  Wu XZ 《Electrophoresis》2006,27(16):3224-3232
A novel CE method combined with SPE in a single capillary was developed for analysis of chlorophenols in water. A frit of 0.5 mm was first made by a sol-gel method, followed by packing a SPE sorbent in the inlet end of the capillary. Two phenol derivatives, 2,4-dichlorophenol and 2,4,5-trichlorophenol, were used as the model compounds. By loading sample solutions into the capillary, the two chlorophenols were extracted into the sorbent. They were desorbed by injecting only about 4 nL of methanol. Finally, the analytes were separated by conventional CE. The technique provided a concentration enhancement factor of over 4000-fold for both chlorophenols. The detection limits (S/N = 3) of 2,4-dichlorophenol and 2,4,5-trichlorophenol were determined to be 0.1 ng/mL and 0.07 ng/mL, respectively. For replicate analyses of 5 ng/mL of 2,4-dichlorophenol, within-day and between-day RSDs of migration time, peak height and peak area were in the range of 1.8-2.0%, 4.0-4.4% and 4.1-4.6%, respectively. The method shows wide linear range, acceptable reproducibility and excellent sensitivity, and it was applied to the analyses of spiked river water samples. The capillary packed with the SPE sorbents can be used for more than 400 runs without performance deterioration.  相似文献   

16.
A new method was developed and validated for the determination of chlorophenols in human urine by using micellar electrokinetic chromatography (MEKC) coupled via a mechanic arm to an on-line automatic clean-up and preconcentration unit for urine samples. Separation is accomplished by using a selective buffer consisting of 15 mM borate, 25 mM phosphate and 100 mM sodium dodecyl sulfate (SDS) at pH 9.1 in addition to a positive power supply of 25 kV at 18 degrees C. The proposed capillary electrophoresis (CE) method allows the separation of 11 chlorophenols within 7 min with a reproducibility as relative standard deviation (RSD) between 2.6% and 7.2%, and limits of detection (LODs) between 0.08 and 0.46 microg/mL for all chlorophenols. Urine samples were previously hydrolyzed with 37% HCl at 80 degrees C for 60 min and then cleaned on a C-18 mini-column. Recoveries ranged from 58% to 103%. The preconcentration treatment affords limits of determination between 4 and 12 ng/mL for all chlorophenols except pentachlorophenol and 4-chlorophenol, which could not be determined. The overall analysis time, including on-line clean-up, preconcentration and electrophoretic separation is 20 min per sample.  相似文献   

17.
This paper presents development of a simple, rapid, and precise analytical method for determination of sulfur dioxide in ambient air by a gas to solid-phase conversion method. Sulfur dioxide is determined in the form of sulfite (SO3(2-)) because the absorbing reagent, potassium tetrachloromercurate (TCM), used in this method absorbs sulfur dioxide from the atmosphere in the form of sulfite. Determination of submicrogram levels of sulfur dioxide was based on the selection of a quantitative analytical peak at 495 cm(-1) among the 3 observed vibrational peaks for the dichlorosulfitomercurate complex formed after reaction of sulfur dioxide with TCM and measurement of absorbance using diffuse reflectance Fourier transform infrared spectroscopy. The limits of detection and quantification of the method were found to be 0.09 and 0.4 microg/g SO3(2-), respectively. The precision in terms of standard deviation and relative standard deviation (RSD) at a level of 2 microg SO3(2-)/10.1 g KBr for n = 10 was found to be 0.036 microg SO3(2-) and 1.8%, respectively. The RSD (n = 10) for determination of sulfur dioxide in ambient air was observed to be in the range of 2.7-4.2%. The method proposed is time saving and eliminates the slow and cumbersome steps of pH maintenance of the reaction mixture and color formation of the U.S. Environmental Protection Agency recommended West and Gaeke spectrophotometric method and other methods for quantitative determination of sulfur dioxide.  相似文献   

18.
Ling DS  Xie HY  He YZ  Gan WE  Gao Y 《Journal of chromatography. A》2010,1217(49):7807-7811
An integrative coupling method of headspace liquid-phase microextraction (HS-LPME) and capillary zone electrophoresis (CZE) was proposed in this paper. In the method, a separation capillary was used to create a microextraction droplet of the running buffer solution of CZE, hold the droplet at the capillary inlet, extract analytes of sample solutions in the headspace of a sample vial, inject concentrated analytes into the capillary and separate the analytes by CZE. The proposed method was applied to determine the preservatives of benzoic acid and sorbic acid in soy sauce and soft drink samples, in which the running buffer solution of 50 mmol/L tetraborate (pH 9.2) was directly used to form the acceptor droplet at the capillary inlet by pressure, and the preservatives in a 6-mL sample solution containing 0.25 g/mL NaCl were extracted at 90°C for 30 min in the headspace of a 14-mL sample vial. Then the concentrated preservatives were injected into the capillary at 10 cm height difference for 20 s and separated by CZE. The enrichment factors of benzoic acid and sorbic acid achieved 266 and 404, and the limits of detection (LODs) were 0.03 and 0.01 μg/mL (S/N=3), respectively. The recoveries were in the range of 88.7-105%. The integrative coupling method of HS-LPME and CZE was simple, convenient, reliable and suitable for concentrating volatile and semi-volatile organic acids and eliminating matrix interferences of real samples.  相似文献   

19.
Chiral CE was successfully applied to the separation and quantification of catechin, epicatechin and ascorbic acid in some commercial drinks and human urine. Analysis involved the separation of analytes in less than 5.0 min at 240 nm with an untreated fused-silica capillary under hydrodynamic injection mode. The running buffer consisted of 50 mM borate buffer with 3 mM beta-CD at pH 8.35. Detection limits for catechin, epicatechin and ascorbic acid were 0.028, 0.011 and 0.004 microg/mL, respectively. Linearity was investigated by selecting the ranges of calibration according to the amount of analytes in urine giving correlation coefficient percent (% r(2)) ranging between 99.4 and 99.6 at 99% confidence level. The maximum urinary excretion of catechin and epicatechin were noted at 2.0 and 4.0 h of the administrated dose. Unchanged catechin, epicatechin and ascorbic acid amounted to about 1.500, 8.696 and 0.003% of the administered dose in the 48.0 h urine collection. The proposed method achieved 99.2% completeness (n = 20) in urine media.  相似文献   

20.
In-tube solid-phase microextraction (SPME) based on a poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column was investigated for the extraction of amphetamine, methamphetamine and their methylenedioxy derivatives. The monolithic capillary column showed high extraction efficiency towards target analytes, which could be attributed to its larger loading amount of extraction phase than conventional open-tubular extraction capillaries and the convective mass transfer procedure provided by its monolithic structure. The extraction mechanism was studied, and the results indicated that the extraction process of the target analytes was involved with hydrophobic interaction and ion-exchange interaction. The polymer monolith in-tube SPME-HPLC system with UV detection was successfully applied to the determination of amphetamine, methamphetamine and their methylenedioxy derivatives in urine samples, yielding the detection limits of 1.4 - 4.0 ng/mL. Excellent method reproducibility (RSD < 2.9%) was found over a linear range of 0.05-5 microg/mL, and the time for the whole analysis was only approximately 25 min. The monolithic capillary column was reusable in coping with the complicated urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号