首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A newly designed needle trap device with Carbopack X as a sorbent material is used for sampling, preconcentration and injection of volatile analytes benzene, toluene, ethylbenzene and xylenes (BTEX) into gas chromatograph. The closed system of stripping the analytes from water samples was used. An injection port with a modified metal liner was used to desorb analytes trapped in needle trap device. The main advantage of needle trap device consists in the simple methodology and easiness and rapidity of the analysis. Needle trap device is suitable for sampling in field. The experimental parameters as breakthrough volume of stripping gas, linearity, repeatability and limit of detection (LOD) and quantification (LOQ) were investigated. LOD ranges from 0.05 to 0.07 microgL(-1) and relative standard deviation ranges from 0.5% to 11.6% at concentrations 5 and 0.1 microgL(-1), respectively.  相似文献   

2.
A carbon-coated fiber for solid-phase microextraction (SPME) has been prepared from powdered activated carbon (PAC) and a fused-silica fiber. Scanning electron microscopy of the coating revealed the carbon particles were uniformly distributed on the surface of the fiber substrate. Efficient extraction of BTEX (benzene, toluene, ethylbenzene, p-xylene, and o-xylene) and halocarbons (chloroform, trichloroethylene, and carbon tetrachloride), with short extraction and desorption times, was achieved by use of the coated fiber. The maximum working temperature of the coated fiber was 300 °C and the lifetime was over 140 desorption operations at 260 °C. Limits of quantification (LOQ) of the SPME method for the eight analytes ranged from 0.01 to 0.94 μg L−1, and relative standard deviations (RSD) were below 7.2% (n=6). Recoveries were 87.9–113.4% when the method was applied to the analysis of BTEX and the halocarbons in real aqueous samples. An erratum to this article is available at .  相似文献   

3.
Solid-phase microextraction (SPME) with a disposable ionic liquid (IL) coating was developed for headspace extraction of benzene, toluene, ethylbenzene, and xylenes (BTEX) in paints. The SPME fiber was coated with IL prior to every extraction, then the analytes were extracted and desorbed on the injection port of gas chromatography, and finally the IL coating on the fiber was washed out with solvents. The coating and washing out of IL from the fiber can be finished in a few minutes. This disposable IL-coated fiber was applied to determine BTEX in water-soluble paints with results in good agreement with that obtained by using commercially available SPME fibers. For all the four studied paints samples, the benzene contents were under the detection limits, but relatively high contents of toluene, ethylbenzene and xylenes (56-271 microg g(-1)) were detected with spiked recoveries in the range of 70-114%. Compared to the widely used commercially available SPME fibers, this proposed disposable IL-coated fiber has much lower cost per determination, comparable reproducibility (RSD < 11%), and no carryover between each determination. Considering that IL possess good extractability for various organic compounds and metals ions, and that task-specific IL can be designed and synthesized for selective extraction of target analytes, this disposable IL coating SPME might has great potential in sample preparation.  相似文献   

4.
Two novel triptycene quinoxaline cavitands ( DiTriptyQxCav and MonoTriptyQxCav ) have been designed, synthesized, and applied in the supramolecular detection of benzene, toluene, ethylbenzene, and xylenes (BTEX) in air. The complexation properties of the two cavitands towards aromatics in the solid state are strengthened by the presence of the triptycene moieties at the upper rim of the tetraquinoxaline walls, promoting the confinement of the aromatic hydrocarbons within the cavity. The two cavitands were used as fiber coatings for solid‐phase microextraction (SPME) BTEX monitoring in air. The best performances in terms of enrichment factors, selectivity, and LOD (limit of detection) values were obtained by using the DiTriptyQxCav coating. The corresponding SPME fiber was successfully tested under real urban monitoring conditions, outperforming the commercial divinylbenzene–Carboxen–polydimethylsiloxane (DVB–CAR–PDMS) fiber in BTEX adsorption.  相似文献   

5.
《Analytical letters》2012,45(14):2393-2405
Abstract

The use of headspace solid‐phase microextraction (HS‐SPME) to determine benzene, toluene, ethylbenzene, and xylenes (BTEX) in foundry molding sand, specifically a “green sand” (clay‐bonded sand) was investigated. The BTEX extraction was conducted using a 75 µM Carboxen‐polydimethylsiloxane (CAR‐PDMS) fiber, which was suspended above 10 g of sample. The SPME fiber was desorbed in a gas chromatograph injector port (280°C for 1 min) and the analytes were characterized by mass spectrometry. The effects of extraction time and temperature, water content, and clay and bituminous coal percentage on HS‐SPME of BTEX were investigated. Because green sands contain bentonite clay and carbonaceous material such as crushed bituminous coal, a matrix effect was observed. The detection limits for BTEX were determined to be ≤0.18 ng g?1 of green sand.  相似文献   

6.
A new method is described for the qualitative and quantitative analysis of cyanide, a very short-acting and powerful toxic agent, in human whole blood. It involves the conversion of cyanide into hydrogen cyanide and its subsequent headspace solid-phase microextraction (HS-SPME) and detection by gas chromatography/mass spectrometry (GC/MS) in selected ion monitoring (SIM) mode. Optimizing the conditions for the GC/MS (type of column, injection conditions, temperature program) and SPME (choice of SPME fiber, effect of salts, adsorption and desorption times, adsorption temperature) led to the choice of a 75-microm carboxen/polydimethylsiloxane SPME fiber, with D3-acetonitrile as internal standard, and a capillary GC column with a polar stationary phase. Method validation was carried out in terms of linearity, precision and accuracy in both aqueous solutions and blood. The limit of detection (LOD) and limit of quantitation (LOQ) were determined only in aqueous solutions. The assay is linear over three orders of magnitude (water 0.01-10, blood 0.05-10 microg/mL); and the LOD and LOQ in water were 0.006 and 0.01 microg/mL, respectively. Good intra- and inter-assay precision was obtained, always <8%. The method is simple, fast and sensitive enough for the rapid diagnosis of cyanide intoxication in clinical and forensic toxicology.  相似文献   

7.
A headspace analysis for groundwater contaminated with BTEX (benzene, toluene, ethylbenzene, and xylenes) was employed to investigate the feasibility and limitations of Carboxen-PDMS (polydimethylsiloxane) fiber during SPME (solid-phase microextraction). Although the response of the Carboxen-PDMS fiber was much higher than that of conventional PDMS fiber, a reduction of the extracted amount was also observed under multi-component conditions due to competitive replacement. The general affinity of analytes to the fiber was high in the order xylene>ethylbenzene>toluene> benzene. The behavior of the Carboxen-PDMS fiber was examined more precisely at constant compositional ratio, because the analysis of contaminants using Carboxen-PDMS fiber was reported to be possible at known composition. The relative affinity of each component was shown to differ according to the total amount of analytes. Furthermore, the extracted amounts of benzene and toluene did not show a consistent tendency as the concentration of each component increased. These results indicate that caution should be exercised if Carboxen-PDMS fibers are used for the analysis of BTEX in groundwater samples.  相似文献   

8.
Ji J  Deng C  Shen W  Zhang X 《Talanta》2006,69(4):894-899
In this work, portable gas chromatography-microflame ionization detection (portable GC-μFID) coupled to headspace solid-phase microextraction (HS-SPME) was developed for the field analysis of benzene, toluene, ethylbenzene and xylene (BTEX) in water samples. The HS-SPME parameters such as fiber coating, extraction times, stirring rate, the ratio of headspace volume to sample volume, and sodium chloride concentration were studied. A 65 μm poly(dimethylsiloxane)-divinylbenzene (PDMS-DVB) SPME fiber, 900 rpm, 3.0 ml of headspace (1.0 ml water sample in 4.0 ml vial), and 35% sodium chloride concentration (w/v) were respectively chosen for the best extraction response. An extraction time of 1.0 min was enough to extract BTEX in water samples. The relative standard deviation (R.S.D.) for the procedure varied from 5.4% to 8.3%. The method detection limits (MDLs) found were lower than 1.5 μg/l, which was enough sensitive to detect the BTEX in water samples. The optimized method was applied to the field analysis of BTEX in wastewater samples. These experiment results show that portable GC-μFID combined with HS-SPME is a rapid, simple and effective tool for field analysis of BTEX in water samples.  相似文献   

9.
Gaseous benzene, toluene, ethylbenzene and o‐xylene (BTEX) were extracted by using the divinylbenzene (DVB) particles (mesh sizes 60–80, 80–100 and 100–120) as sorbents packed in passive needle trap samplers (NTS). This study performed feasibility tests of these self‐designed DVB‐NTS as diffusive time‐weighted average (TWA) samplers and compared extraction efficiency with that of 100 mm polydimethylsiloxane‐solid phase microextration (PDMS‐SPME) fiber for sampling gaseous and particle‐bound volatile organic compounds (VOCs) from burning mosquito coils. Experimental results indicated that extraction rate of NTS is a reliable index in extracting VOCs. Additionally, comparisons of the NTS in extracting BTEX mass showed the NTS packed with the smallest diameters of adsorbent particles (100–120 mesh DVB) were the most effective. The mass of gaseous BTEX extracted by 100 μm PDMS‐SPME fiber were substantially lower than that extracted by DVB‐NTS of all meshes for the 30‐min TWA sampling of burning mosquito coils, and NTS packed with 100–120 mesh DVB adsorbed BTEX 50–120 ng BTEX. Particles clogging inside the packed phase of NTS inhibited VOC extraction performance after 3–5 samplings of burning particles, especially NTS packed with small‐diameter adsorbents.  相似文献   

10.
A simple, rapid, and solvent-free method for quantitative determination of benzene, toluene, and Xylene in exposed Drosophila larvae was developed using headspace solid-phase microextraction (HS-SPME) coupled to GC/MS. Larvae fed on standard Drosophila food mixed with benzene, toluene, and Xylene for 48 h were homogenized in Milli-Q water. Extraction of benzene, toluene, and Xylene was performed at 65 degrees C for 30 min on the SPME fiber (silica-fused). Subsequently, the fiber was desorbed in the GC injection port, followed by GC/MS analysis in the selected-ion monitoring mode. An external calibration curve was used for the quantification of benzene, toluene, and Xylene in the exposed organism. Recoveries were in the range of 78-82% (intraday) and 76-81% (interday) in larvae, and 91-96% (intraday) and 87-92% (interday) in the diet. LOD with an S/N of 3:1 and LOQ with an S/N of 10:1 were in the range of 0.01-0.023 and 0.034-0.077 microg/L, respectively. Percent RSD values for benzene, toluene, and Xylene were in the range of 0.50-0.81 (intraday) and 0.89-1.23 (interday) for retention time, and 2.16--3.85 (intraday) and 2.99-4.95 (interday) for peak concentration, showing good repeatability. This method was sensitive enough to quantitate benzene, toluene, and Xylene in small exposed organisms like Drosophila larvae. The SPME/GC/MS method developed may have wider applications in various in vivo toxicological studies.  相似文献   

11.
Currently, the information available on the physiological functions of melatonin in higher plants is rather limited and the role of plant melatonin in human health remains undetermined. Research in this area has been slow due to lack of efficient analytical methods for rapid identification and quantification of the melatonin and related compounds in complex plant matrices. In this communication, we report the development of a rapid, accurate method for extraction, detection and quantification of plant melatonin, serotonin and indole-3-acetic acid (IAA) by Liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI), respectively. The limit of detection (LOD) of melatonin in the plant extraction was 5 pg/ml and the limit of quantification (LOQ) was 0.02 ng/ml, as well as LOD for serotonin was 100 pg/ml and the LOQ was 5 ng/ml, LOD for IAA was 50 pg/ml and the LOQ was 0.7 ng/ml. There was a linear relationship between melatonin, serotonin, and IAA concentration and peak area over a quantifiable range of 0.02 ng/ml to 0.1 mg/ml, 5 ng/ml to 0.1 mg/ml, and 0.7 ng/ml to 0.1 mg/ml, respectively, in the plant extract.  相似文献   

12.
Summary Extra-fine powdered activated charcoal has been used as stationary phase (coating layer) in solid-phase microextraction (SPME). The efficiency and reliability of the prepared device have been investigated for the extraction of some volatile organic compounds such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) from the headspace of water samples. Monitoring of the extracted compounds and further quantitative analysis of the real samples have been performed by capillary GC-FID. Effects of several factors such as temperature, addition of salt, and stirring speed on extraction efficiency and exposure time have been studied. Under optimum conditions, extraction recoveries for these compounds from 50 mL water were >95%. The calibration graphs were linear in the range 5 to 104 pg mL−1 and the detection limit for each BTEX compound was 1.5–2 pg mL−1. The results obtained by use of this porous layer activated charcoal (PLAC)-coated fiber have also been compared with results reported in the literature by use of a polydimethylsiloxane (PDMS)-coated fiber. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

13.
Metal-organic frameworks (MOFs) have received great attention as novel sorbents due to their fascinating structures and intriguing potential applications in various fields. In this work, a MIL-101(Cr)-coated solid-phase microextraction (SPME) fiber was fabricated by a simple direct coating method and applied to the determination of volatile compounds (BTEX, benzene, toluene, ethylbenzene, m-xylene and o-xylene) and semi-volatile compounds (PAHs, polycyclic aromatic hydrocarbons) from water samples. The extraction and desorption conditions of headspace SPME (HS-SPME) were optimized. Under the optimized conditions, the established methods exhibited excellent extraction performance. Good precision (<7.7%) and low detection limits (0.32–1.7 ng L−1 and 0.12–2.1 ng L−1 for BTEX and PAHs, respectively) were achieved. In addition, the MIL-101(Cr)-coated fiber possessed good thermal stability, and the fiber can be reused over 150 times. The fiber was successfully applied to the analysis of BTEX and PAHs in river water by coupling with gas chromatography–mass spectrometry (GC–MS). The analytes at low concentrations (1.7 and 10 ng L−1) were detected, and the recoveries obtained with the spiked river water samples were in the range of 80.0–113% and 84.8–106% for BTEX and PAHs, respectively, which demonstrated the applicability of the self-made fiber.  相似文献   

14.
In this work cobalt oxide nanoparticles were introduced for preparation of a novel solid phase microextraction (SPME) fiber coating. Chemical bath deposition (CBD) technique was used in order for synthesis and immobilization of the Co3O4 nanomaterials on a Pt wire for fabrication of SPME fiber. The prepared cobalt oxide coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The fiber was evaluated for the extraction of benzene, toluene, ethylbenzene and xylene (BTEX) in combination with GC–MS. A simplex optimization method was used to optimize the factors affecting the extraction efficiency. Under optimized conditions, the proposed fiber showed extraction efficiencies comparable to those of a commercial polydimethylsiloxane (PDMS) fiber toward the BTEX compounds. The repeatability of the fiber and its reproducibility, expressed as relative standard deviation (RSD), were lower than about 11%. No significant change was observed in the extraction efficiency of the new SPME fiber after over 50 extractions. The fiber was successfully applied to the determination of BTEX compounds in real samples. The proposed nanostructure cobalt oxide fiber is a promising alternative to the commercial fibers as it is robust, inexpensive and easily prepared.  相似文献   

15.
The analysis of samples contaminated by organic compounds is an important aspect of environmental monitoring. Because of the complex nature of these samples, isolating target organic compounds from their matrices is a major challenge. A new isolation technique, solid phase microextraction, or SPME, has recently been developed in our laboratory. This technique combines the extraction and concentration processes into one step; a fused silica fiber coated with a polymer is used to extract analytes and transfer them into a GC injector for thermal desorption and analysis. It is simple, rapid, inexpensive, completely solvent-free, and easily automated. To minimize matrix interferences in environmental samples, SPME can be used to extract analytes from the headspace above the sample. The combination of headspace sampling with SPME separates volatile and semi-volatile analytes from non-volatile compounds, thus greatly reducing the interferences from non-target compounds. This paper reports the use of headspace SPME to isolate volatile organic compounds from various matrices such as water, sand, clay, and sludge. By use of the technique, benzene, toluene, ethyl-benzene, and xylene isomers (commonly known as BTEX), and volatile chlorinated compounds can be efficiently isolated from various matrices with good precision and low limits of detection. This study has found that the sensitivity of the method can be greatly improved by the addition of salt to water samples, water to soil samples, or by heating. Headspace SPME can also be used to sample semi-volatile compounds, such as PAHs, from complex matrices.  相似文献   

16.
Gold wire was coated with polypyrrole (PPY) by electropolymerization and used as a solid-phase microextraction (SPME) fiber. The adsorptive property of the coating was modified by doping with tetrasulfonated nickel phthalocyanine (NiPcTS). The efficiency and reliability of this fiber was investigated for the extraction of BTEX compounds from the headspace of water samples. Monitoring of extraction efficiency was performed by capillary GC-FID. Effects of several factors such as electropolymerization time, salt addition, exposure time and stirring speed on extraction efficiency were studied. The calibration graphs were linear in the range of 0.06 to 50 ng mL?1 and the detection limits for BTEX compounds were 20–50 pg mL?1. Comparing the results obtained using these fibers with results reported in the literature with polydimethylsiloxane (PDMS) fibers shows that under optimum conditions, the detection limits are comparable.  相似文献   

17.
A highly porous fiber coated with polythiophene/hexagonally ordered silica nanocomposite was prepared for solid‐phase microextraction (SPME). The prepared nanomaterial was immobilized onto a stainless‐steel wire for the fabrication of the SPME fiber. Polythiophene/hexagonally ordered silica nanocomposite fibers were used for the extraction of some polycyclic aromatic hydrocarbons from water samples. The extracted analytes were transferred to the injection port of a gas chromatograph using a laboratory‐designed SPME device. The results obtained prove the ability of the polythiophene/hexagonally ordered silica material as a new fiber for the sampling of organic compounds from water samples. This behavior is due most probably to the increased surface area of the polythiophene/hexagonally ordered silica nanocomposite. A one‐at‐a‐time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, and desorption temperature and time. Under the optimum conditions, the LOD of the proposed method is 0.1–3 pg/mL for analysis of polycyclic aromatic hydrocarbons from aqueous samples, and the calibration graphs were linear in a concentration range of 0.001–20 ng/mL (R2 > 0.990) for most of the polycyclic aromatic hydrocarbons. The single fiber repeatability and fiber‐to‐fiber reproducibility were less than 8.6 and 19.1% (n = 5), respectively.  相似文献   

18.
In this study, a new calibration method, standard-free kinetic calibration, is proposed for rapid on-site analysis by solid-phase microextraction (SPME), based on the diffusion-controlled mass transfer model and equilibrium extraction. With this calibration method, all analytes can be directly calibrated with only two samplings. The feasibility of this calibration method was validated in a standard aqueous solution flow-through system and a standard gas flow-through system. The distribution coefficients of five polycyclic aromatic hydrocarbons (PAHs), including naphthalene, acenaphthene, fluorene, anthracene, and pyrene, between water and the PDMS fiber coating were determined and the concentrations of the PAHs in the flow-through system were successfully calibrated with the proposed standard-free calibration method. The extracted amounts of BTEX (benzene, toluene, ethylbezene, o-xylene) at equilibrium were also successfully calibrated with this method with two rapid sampling periods at 5 and 10 s. Compared with the previous calibration methods for rapid on-site analysis by SPME, this method does not require a standard to calibrate the extraction, nor does it require additional equipment to control or measure the flow velocity of the sample matrix. In addition, all of the extracted analytes can be quantified without considering whether the system reached equilibrium. The newly proposed standard-free kinetic calibration approach enriched the calibration methods available for on-site analysis by SPME.  相似文献   

19.
Solid-phase microextraction (SPME) coupled to gas chromatography/mass spectrometry (GC/MS) was applied to the determination of phthalate esters in human serum. The present method decreased the sample preparation time by a factor of 50 by using direct immersion SPME with an 85-m polyacrylate fiber to extract phthalate esters from the matrix. The use of fast GC/MS further improves total analysis time when compared to other techniques. Isotope dilution was successfully applied to improve the precision, reproducibility, and repeatability of the SPME method. The linear dynamic range spans several orders of magnitude from low ppb to ppm levels, and the LOD for the method is 15 pg L–1 on average with RSDs less than 4% for the six phthalate esters included in this study.  相似文献   

20.
Zhu F  Guo J  Zeng F  Fu R  Wu D  Luan T  Tong Y  Lu T  Ouyang G 《Journal of chromatography. A》2010,1217(50):7848-7854
Two kinds of porous carbon materials, including carbon aerogels (CAs), wormhole-like mesoporous carbons (WMCs), were synthesized and used as the coatings of solid-phase microextraction (SPME) fibers. By using stainless steel wire as the supporting core, six types of fibers were prepared with sol-gel method, direct coating method and direct coating plus sol-gel method. Headspace SPME experiments indicated that the extraction efficiencies of the CA fibers are better than those of the WMC fibers, although the surface area of WMCs is much higher than that of CAs. The sol-gel-CA fiber (CA-A) exhibited excellent extraction properties for non-polar compounds (BTEX, benzene, toluene, ethylbenzene, o-xylene), while direct-coated CA fiber (CA-B) presented the best performance in extracting polar compounds (phenols). The two CA fibers showed wide linear ranges, low detection limits (0.008-0.047μgL(-1) for BTEX, 0.15-5.7μgL(-1) for phenols) and good repeatabilities (RSDs less than 4.6% for BTEX, and less than 9.5% for phenols) and satisfying reproducibilities between fibers (RSDs less than 5.2% for BTEX, and less than 9.9% for phenols). These fibers were successfully used for the analysis of water samples from the Pearl River, which demonstrated the applicability of the home-made CA fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号