共查询到20条相似文献,搜索用时 62 毫秒
1.
图G的pebbling数f(G)是最小的整数n,使得不论n个pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动把1个pebble移到任意一个顶点上,其中一个pebbling移动是从一个顶点处移走两个pebble而把其中的一个移到与其相邻的一个顶点上。Graham猜想对于任意的连通图G和H有f(G×H)f(G)f(H)。多扇图Fn1,n2,…,nm是指阶为n1+n2+…+nm+1的联图P1∨(Pn1∪Pn2∪…∪Pnm)。本文首先给出了多扇图的pebbling数,然后证明了多扇图Fn1,n2,…,nm具有2-pebbling性质,最后论述了对于一个多扇图和一个具有2-pebbling性质的图的乘积来说,Graham猜想是成立的。作为一个推论,当G和H都是多扇图时,Graham猜想成立。 相似文献
2.
Chung定义了图G上的一个pebbling移动是从一个顶点移走两个pebble而把其中的一个移到与其相邻的一个顶点上.连通图G的pebbling数f(G)是最小的正整数n,使得不管n个pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动把一个pebble移到G的任意一个顶点上.Graham猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H).作者们验证了三类二部图的2-pebbling性质以及当H为此类二部图,G为一个2-pebbling性质的图时,Graham猜想成立. 相似文献
3.
图G的pebbling数f(G)是最小的整数n,使得不论n个pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动把1个pebble移到任意一个顶点上,其中的pebbling移动是从一个顶点处移走两个pebble而把其中的一个移到与其相邻的一个顶点上. Graham猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H).证明了对于一个完全二部图和一个具有2-pebbling性质的图来说,Graham猜想是成立的,作为一个推论,当G和H都是完全二部图时,Graham猜想成立. 相似文献
4.
5.
金芳蓉定义了图 G上的一个 pebbling 移动是从一个顶点处移走两个pebble 而把其中的一个移到与其相邻的一个顶点上. 图G的pebbling数f(G)是最小的整数n, 使得不管n 个pebble 如何放置在G的顶点上, 总可以通过一系列的 pebbling 移动把一个pebble 移到 G的任一个顶点上. Graham 猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H). 计算了两个扇图的积和两个轮图的积的pebbling数, 作为推论, 当G和H同时是扇图或轮图时, Graham 猜想成立. 相似文献
6.
广义友谊图乘积上的Graham pebbling猜想 总被引:1,自引:1,他引:0
连通图G的pebbling数f(G)是最小的正整数n,使得不管n个pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动把一个pebble移到图G的任意一个顶点上.Graham猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H).文中证明了当H为友谊图或广义友谊图,G是一个具有2-pebbling性质的图时,Graham猜想成立.作为一个推论,文中也证明了当G和H是友谊图或广义友谊图时,Graham猜想成立. 相似文献
7.
图 G的 pebbling数 f(G)是最小的整数 n,使得不论 n个 pebble如何放置在 G的顶点上 ,总可以通过一系列的 pebbling移动把一个 pebble移到任意一个顶点上 ,其中的 pebbling移动是从一个顶点上移走两个 pebble而把其中的一个移到与其相邻的一个顶点上 .设 K1,n为 n+1个顶点的星形图 .本文证明了 (n+2 )(m+2 )≥ f K1,n× K1,m)≥ (n+1) (m+1) +7,n>1,m>1. 相似文献
8.
图G的Pebbling数f(G)是最小的正整数n,使得不论n个Pebble如何放置在G的顶点上,总可以通过一系列的Pebbling移动把1个Pebble移到任意一点上,其中Pebbling移动是从一个顶点处移走两个Pebble而把其中一个移到与其相邻的一个顶点上.Graham猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H).本文证明对于一个完全γ部图和一个具有2-Pebbleing性质的图来说,Graham猜想成立.作为一个推论,当G和H均为完全γ部图时,Graham猜想成立. 相似文献
9.
图G的Pebbling数f(G)是最小的正整数n,使得不论n个Pebble如何放置在G的顶点上,总可以通过一系列的Pebbling移动把1个Pebble移到任意一点上,其中Pebbling移动是从一个顶点处移走两个Pebble而把其中一个移到与其相邻的一个顶点上。Graham猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H)。本文证明对于一个完全r部图和一个具有2-Pebbleing性质的图来说,Graham猜想成立。作为一个推论,当G和H均为完全r部图时,Graham猜想成立。 相似文献
10.
图G的Pebbling数f(G)是最小的正整数n,使得不论n个Pebble如何放置在G的顶点上,总可以通过一系列的Pebbling移动把1个Pebble移到任意一点上,其中Pebbling移动是从一个顶点处移走两个Pebble而把其中一个移到与其相邻的一个顶点上.Graham猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H).本文证明对于一个完全γ部图和一个具有2-Pebbleing性质的图来说,Graham猜想成立.作为一个推论,当G和H均为完全γ部图时,Graham猜想成立. 相似文献
11.
David S. Herscovici 《Journal of Graph Theory》2003,42(2):141-154
Chung defined a pebbling move on a graph G to be the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The pebbling number of a connected graph is the smallest number f(G) such that any distribution of f(G) pebbles on G allows one pebble to be moved to any specified, but arbitrary vertex by a sequence of pebbling moves. Graham conjectured that for any connected graphs G and H, f(G×H)≤ f(G)f(H). We prove Graham's conjecture when G is a cycle for a variety of graphs H, including all cycles. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 141–154, 2003 相似文献
12.
Pebbling numbers of some graphs 总被引:1,自引:0,他引:1
Chung defined a pebbling move on a graphG as the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The pebbling number of
a connected graphG, f(G), is the leastn such that any distribution ofn pebbles onG allows one pebble to be moved to any specified but arbitrary vertex by a sequence of pebbling moves. Graham conjectured that
for any connected graphsG andH, f(G xH) ≤
f(G)f(H). In the present paper the pebbling numbers of the product of two fan graphs and the product of two wheel graphs are computed.
As a corollary, Graham’s conjecture holds whenG andH are fan graphs or wheel graphs. 相似文献
13.
14.
15.
Results regarding the pebbling number of various graphs are presented. We say a graph is of Class 0 if its pebbling number equals the number of its vertices. For diameter d we conjecture that every graph of sufficient connectivity is of Class 0. We verify the conjecture for d = 2 by characterizing those diameter two graphs of Class 0, extending results of Pachter, Snevily and Voxman. In fact we use this characterization to show that almost all graphs have Class 0. We also present a technical correction to Chung's alternate proof of a number theoretic result of Lemke and Kleitman via pebbling. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 119–128, 1997 相似文献
16.
《Discrete Mathematics》2022,345(7):112893
In this paper, we study the Reconstruction Conjecture for finite simple graphs. Let Γ and be finite simple graphs with at least three vertices such that there exists a bijective map and for any , there exists an isomorphism . Then we define the associated directed graph with two kinds of arrows from the graphs Γ and , the bijective map f and the isomorphisms . By investigating the associated directed graph , we study when are the two graphs Γ and isomorphic. 相似文献
17.
18.
19.
It is shown that, for ϵ>0 and n>n0(ϵ), any complete graph K on n vertices whose edges are colored so that no vertex is incident with more than (1-1/\sqrt2-\epsilon)n edges of the same color contains a Hamilton cycle in which adjacent edges have distinct colors. Moreover, for every k between 3 and n any such K contains a cycle of length k in which adjacent edges have distinct colors. © 1997 John Wiley & Sons, Inc. Random Struct. Alg., 11 , 179–186 (1997) 相似文献
20.
The crossing number, cr(G), of a graph G is the least number of crossing points in any drawing of G in the plane. According to the Crossing Lemma of M. Ajtai, V. Chvátal, M. Newborn, E. Szemerédi, Theory and Practice of Combinatorics, North‐Holland, Amsterdam, New York, 1982, pp. 9–12 and F. T. Leighton, Complexity Issues in VLSI, MIT Press, Cambridge, 1983, the crossing number of any graph with n vertices and e>4n edges is at least constant times e3/n2. Apart from the value of the constant, this bound cannot be improved. We establish some stronger lower bounds under the assumption that the distribution of the degrees of the vertices is irregular. In particular, we show that if the degrees of the vertices are d1?d2?···?dn, then the crossing number satisfies \begin{eqnarray*}{\rm{cr}}(G)\geq \frac{c_{1}}{n}\end{eqnarray*} with \begin{eqnarray*}{\textstyle\sum\nolimits_{{{i}}={{{1}}}}^{{{n}}}}{{id}}_{{{i}}}^{{{3}}}-{{c}}_{{{2}}}{{n}}^{{{2}}}\end{eqnarray*}, and that this bound is tight apart from the values of the constants c1, c2>0. Some applications are also presented. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 12–21, 2010 相似文献