首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
This paper is dedicated to the study of light rays joining an event p with a timelike curve γ in a light–convex subset &\Lambda; of a stably causal Lorentzian manifold . We set up a functional framework, defined intrinsically, consisting of a family of manifolds and a positive functional Q defined on them. The critical points of Q on approach, as , the lightlike, future pointing geodesics joining p and γ. We prove some regularity results, including the C 1–regularity of , the C 2–regularity of Q on and the C 2–regularity of its critical points. Using them, we develop a Ljusternik–Schnirelman theory for light rays, obtaining some multiplicity results, depending on the topology of the space of all lightlike curves joining p and γ. Received: 9 April 1996 / Accepted: 27 December 1996  相似文献   

2.
The standard text-book Jacobi equation (equation of geodesic deviation) arises by linearizing the geodesic equation around some chosen geodesic, where the linearization is done with respect to the coordinates and the velocities. The generalized Jacobi equation, introduced by Hodgkinson in 1972 and further developed by Mashhoon and others, arises if the linearization is done only with respect to the coordinates, but not with respect to the velocities. The resulting equation has been studied by several authors in some detail for timelike geodesics in a Lorentzian manifold. Here we begin by briefly considering the generalized Jacobi equation on affine manifolds, without a metric; then we specify to lightlike geodesics in a Lorentzian manifold. We illustrate the latter case by considering particular lightlike geodesics (a) in Schwarzschild spacetime and (b) in a plane-wave spacetime.  相似文献   

3.
Given a Lorentzian manifold (M, g), an event p and an observer U in M, then p and U are light conjugate if there exists a lightlike geodesic γ : [0, 1] → M joining p and U whose endpoints are conjugate along γ. Using functional analytical techniques, we prove that if one fixes p and U in a differentiable manifold M, then the set of stationary Lorentzian metrics in M for which p and U are not light conjugate is generic in a strong sense. The result is obtained by reduction to a Finsler geodesic problem via a second order Fermat principle for light rays, and using a transversality argument in an infinite dimensional Banach manifold setup.  相似文献   

4.
In this paper an infinite dimensional Morse theory for lightlike geodesics joining a point with a timelike curve on a class of Lorentzian manifolds is developed under intrinsic assumptions. It yields applications to the gravitational lens effect. In particular we show that the number of images in the gravitational lens effect is infinite or odd.  相似文献   

5.
As an example of a dynamical cosmological black hole, a spacetime that describes an expanding black hole in the asymptotic background of the Einstein-de Sitter universe is constructed. The black hole is primordial in the sense that it forms ab initio with the big bang singularity and its expanding event horizon is represented by a conformal Killing horizon. The metric representing the black hole spacetime is obtained by applying a time dependent conformal transformation on the Schwarzschild metric, such that the result is an exact solution with a matter content described by a two-fluid source. Physical quantities such as the surface gravity and other effects like perihelion precession, light bending and circular orbits are studied in this spacetime and compared to their counterparts in the gravitational field of the isolated Schwarzschild black hole. No changes in the structure of null geodesics are recorded, but significant differences are obtained for timelike geodesics, particularly an increase in the perihelion precession and the non-existence of circular timelike orbits. The solution is expressed in the Newman-Penrose formalism.  相似文献   

6.
In an arbitrary Lorentzian manifold, we fix a spacelike submanifold P and a timelike submanifold . We interpret P as (the surface of) a light source at a particular instant of time, and we interpret as the history of (the surface of) a receiver. We prove the following version of Fermat's principle. Among all lightlike curves from P to , the lightlike geodesics which are perpendicular to P and spatially perpendicular to are characterized by stationary arrival time. Here, the arrival time is defined with the help of an arbitrary time function on . Moreover, we show that the second variation of the arrival time at a stationary point is characterized by a Morse index theorem.  相似文献   

7.
A detailed study of the existence, causal character and multiplicity of geodesics joining two points is carried out for a wide family of non-static Lorentz manifolds (including intermediate Reissner-Nordström, inner Schwarzschild and Generalized Robertson-Walker spacetimes). Results relating causality and connectedness by timelike or lightlike geodesics are obtained, in the spirit of the well-known Avez-Seifert result. The existence of closed spacelike geodesics is also characterized.  相似文献   

8.
An exact solution of Einstein’s equations representing the static gravitational field of a quasi-spherical source endowed with both mass and mass quadrupole moment is considered. It belongs to the Weyl class of solutions and reduces to the Schwarzschild solution when the quadrupole moment vanishes. The geometric properties of timelike circular orbits (including geodesics) in this spacetime are investigated. Moreover, a comparison between geodesic motion in the spacetime of a quasi-spherical source and non-geodesic motion of an extended body also endowed with both mass and mass quadrupole moment as described by Dixon’s model in the gravitational field of a Schwarzschild black hole is discussed. Certain “reciprocity relations” between the source and the particle parameters are obtained, providing a further argument in favor of the acceptability of Dixon’s model for extended bodies in general relativity.  相似文献   

9.
Recent observations on the quasar absorption spectra supply evidence for the variation of the fine structure constant α. In this paper, we propose another interpretation of the observational data on the quasar absorption spectra: a scenario with spacetime inhomogeneity and anisotropy. Maybe the spacetime is characterized by the Finsler geometry instead of the Riemann one. The Finsler geometry admits fewer symmetries than the Riemann geometry does. We investigate the Finslerian geodesic equations in the Randers spacetime (a special Finsler spacetime). It is found that the cosmological redshift in this spacetime deviates from the one in general relativity. The modification term to the redshift could be generally revealed as a monopole plus dipole function of spacetime locations and directions. We suggest that this modification corresponds to the spatial monopole and dipole of α variation in the quasar absorption spectra.  相似文献   

10.
In quantum theory, the curved spacetime of Einstein's general theory of relativity acts as a dispersive optical medium for the propagation of light. Gravitational rainbows and birefringence replace the classical picture of light rays mapping out the null geodesics of curved spacetime. Even more remarkably, superluminal propagation becomes a real possibility, raising the question of whether it is possible to send signals into the past. In this article, we review recent developments in the quantum theory of light propagation in general relativity and discuss whether superluminal light is compatible with causality.  相似文献   

11.
The existence and stability under linear perturbation of closed timelike curves in the spacetime associated to Schwarzschild black hole pierced by a spinning string are studied. Due to the superposition of the black hole, we find that the spinning string spacetime is deformed in such a way to allow the existence of closed timelike geodesics.  相似文献   

12.
We present an extension of the classical Fermat principle in optics to stationary space-times. This principle is applied to study the light rays joining an event with a timelike curve. Existence and multiplicity results of light rays are proved. Moreover, Morse Relations relating the set of rays to the topology of the space-time are obtained, by using the number of conjugate points of the ray. The results hold also for stationary space-times with boundary, in particular the Kerr space-time outside the stationary limit surface.  相似文献   

13.
The existence and stability under linear perturbations of closed timelike geodesics (CTG) in Bonnor–Ward spacetime is studied in some detail. Regions where the CTG exist and are linearly stable are exhibited.  相似文献   

14.
We investigate the Plebański class of electrodynamical theories, i.e., theories of nonlinear vacuum electrodynamics that derive from a Lorentz‐invariant Lagrangian (or Hamiltonian). In any such theory the light rays are the lightlike geodesics of two optical metrics that depend on the electromagnetic background field. A set of necessary and sufficient conditions is found whose fulfillment secures that the optical metrics are causal in the sense that the light rays are lightlike or timelike with respect to the underlying space‐time metric. Thereupon we derive conditions on the Lagrangian, or the Hamiltonian, of the theory such that the causality conditions are satisfied for all allowed background fields. (The allowed values of the field strength tensor are those for which the excitation tensor is finite and real.) The general results are illustrated with several examples.

  相似文献   


15.
Recent results on the maximization of the charged-particle action in a globally hyperbolic spacetime are discussed and generalized. We focus on the maximization of over a given causal homotopy class of curves connecting two causally related events x 0x 1. Action is proved to admit a maximum on , and also one in the adherence of each timelike homotopy class C. Moreover, the maximum σ 0 on is timelike if contains a timelike curve (and the degree of differentiability of all the elements is at least C 2). In particular, this last result yields a complete Avez-Seifert type solution to the problem of connectedness through trajectories of charged particles in a globally hyperbolic spacetime endowed with an exact electromagnetic field: fixed any charge-to-mass ratio q/m, any two chronologically related events x 0x 1 can be connected by means of a timelike solution of the Lorentz force equation corresponding to q/m. The accuracy of the approach is stressed by many examples, including an explicit counterexample (valid for all q/m≠0) in the non-exact case. As a relevant previous step, new properties of the causal path space, causal homotopy classes and cut points on lightlike geodesics are studied. An erratum to this article is available at .  相似文献   

16.
The statement of the title is proved. It implies that under physically reasonable conditions, spacetimes which are free from singularities are necessarily stably causal and hence admit a time function. Read as a singularity theorem it states that if there is some form of causality violation on spacetime then either it is the worst possible, namely violation of chronology, or there is a singularity. The analogous result: “Non-totally vicious spacetimes without lightlike rays are globally hyperbolic” is also proved, and its physical consequences are explored.  相似文献   

17.
We formulate the concept of time machine structure for spacetimes exhibiting a compactly constructed region with closed timelike curves. After reviewing essential properties of the pseudo Schwarzschild spacetime introduced by Ori, we present an analysis of its geodesics analogous to the one conducted in the case of the Schwarzschild spacetime. We conclude that the pseudo Schwarzschild spacetime is geodesically incomplete and not extendible to a complete spacetime. We then introduce a rotating generalization of the pseudo Schwarzschild metric, which we call the pseudo Kerr spacetime. We establish its time machine structure and analyze its global properties.  相似文献   

18.
The de Sitter spacetime is transitive under a combination of translations and proper conformal transformations. Its usual family of geodesics, however, does not take into account this property. As a consequence, there are points in de Sitter spacetime which cannot be joined to each other by any one of these geodesics. By taking into account the appropriate transitivity properties in the variational principle, a new family of maximizing trajectories is obtained, whose members are able to connect any two points of the de Sitter spacetime. These geodesics introduce a new notion of motion, given by a combination of translations and proper conformal transformations, which may possibly become important at very-high energies, where conformal symmetry plays a significant role.  相似文献   

19.
In this paper, we investigate spacelike metric foliations in lightlike complete spacetimes. When such a foliation satisfies the strong energy condition RicV (e) ≥ 0 for timelike vectors e, it must be totally geodesic, and the metric is of higher rank, in the sense that each point of the spacetime is contained inside a flat, totally geodesic, timelike rectangle. If in addition RicV(e) = 0, then the metric is (at least locally) a product metric, with the leaves of the foliation tangent to one of the factors.  相似文献   

20.
In order to find out whether empty singular boundaries can arise in higher dimensional Gravity, we study the solution of Einstein’s equations consisting in a (N + 2)-dimensional static and hyperplane symmetric perfect fluid satisfying the equation of state ρ = ηp, being η an arbitrary constant and N ≥ 2. We show that this spacetime has some weird properties. In particular, in the case η > −1, it has an empty (without matter) repulsive singular boundary. We also study the behavior of geodesics and the Cauchy problem for the propagation of massless scalar field in this spacetime. For η > 1, we find that only vertical null geodesics touch the boundary and bounce, and all of them start and finish at z = ∞; whereas non-vertical null as well as all time-like ones are bounded between two planes determined by initial conditions. We obtain that the Cauchy problem for the propagation of a massless scalar field is well-posed and waves are completely reflected at the singularity, if we only demand the waves to have finite energy, although no boundary condition is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号