首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄钟民  谢臻  张易申  彭林欣 《力学学报》2021,53(9):2541-2553
发展了一种求解面内变刚度功能梯度薄板弯曲问题的神经网络方法. 面内变刚度薄板弯曲问题的偏微分控制方程为一复杂的4阶偏微分方程, 传统的基于强形式的神经网络解法在求解该偏微分方程时可能会遇到难以收敛、边界条件难以处理的情况. 本文基于Kirchhoff薄板弯曲理论, 提出了一种直角坐标系下任意面内变刚度薄板弯曲问题的神经网络解法. 神经网络模型包含挠度网络与弯矩网络, 分别用于预测薄板的挠度与弯矩, 从而将求解4阶偏微分方程转换为求解一系列二阶偏微分方程组, 通过对挠度、弯矩试函数的构造可使得神经网络计算结果严格满足边界条件. 在误差的反向传播中, 根据本文提出的误差函数公式计算训练误差并结合Adam优化算法更新模型的内部参数. 求解了不同边界条件、形状的面内变刚度薄板弯曲问题, 并将所得计算结果与理论解、有限元解进行对比. 研究表明, 本文模型对于求解面内变刚度薄板弯曲问题具备适应性, 虽然模型中的弯矩网络收敛较挠度网络要慢, 但本文方法在试函数的构造上更为简单、适应性更强.   相似文献   

2.
Certain classes of slender structures of complex cross-section or fabricated from specialised materials can exhibit a bi-linear bending moment-curvature relationship that has a strong influence on their global structural behaviour. This condition may be encountered, for instance, in (a) non-linear elastic or inelastic post-buckling problems if the cross-section stiffness may be well approximated by a bi-linear model; (b) multi-layered structures such as stranded cables, power transmission lines, umbilical cables and flexible pipes where the drop in the bending stiffness is associated with an internal friction mechanism. This paper presents a mathematical formulation and an analytical solution for such slender structures with a bi-linear bending moment versus curvature constitutive behaviour and subjected to axial terminal forces. A set of five first-order non-linear ordinary differential equations are derived from considering geometrical compatibility, equilibrium of forces and moments and constitutive equations, with hinged boundary conditions prescribed at both ends, resulting a complex two-point boundary value problem. The variables are non-dimensionalised and solutions are developed for monotonic and unloading conditions. The results are presented in non-dimensional graphs for a range of critical curvatures and reductions in bending stiffness, and it is shown how these parameters affect the structure's post-buckling behaviour.  相似文献   

3.
本文基于薄板小挠度弯曲问题的基本解,建立了任意边界条件、域内具有支承及附有征意个集中质量的薄板自山振动的边界积分方程,文中计算了若干算例,其精度是实际工程中所允许的。  相似文献   

4.
übersicht über das Prinzip von Hamilton wird das nichtlineare Randwertproblem eines kippenden Kragträgers hergeleitet, der durch ein mitgehendes, zeitunabhängiges Endmoment belastet wird. Die Stabilität des sich einstellenden Gleichgewichtszustandes wird untersucht. Der Einflu\ sowohl äu\erer als auch innerer Dämpfung auf die kritische Last wird eingehend diskutiert.
Effects of external and internal damping on the stability of Prandtl's cantilever subjected to a follower bending moment
Summary Using Hamilton's principle the non-linear boundary value problem for lateral buckling of a cantilever beam subjected to a follower time-independent bending moment is derived. The stability of the resulting state of equilibrium is studied. The influence of external and internal damping on the critical load is discussed in detail.
  相似文献   

5.
The general bending problem of conical shells on the elastic foundation (Winkler Medium) is not solved. In this paper, the displacement solution method for this problem is presented. From the governing differential equations in displacement form of conical shell and by introducing a displacement function U(s,θ), the differential equations are changed into an eight-order soluble partial differential equation about the displacement function U(s,θ) in which the coefficients are variable. At the same time, the expressions of the displacement and internal force components of the shell are also given by the displacement function U(s θ). As special cases of this paper, the displacement function introduced by V.S. Vlasov in circular cylindrical shell[5], the basic equation of the cylindrical shell on the elastic foundation and that of the circular plates on the elastic foundation are directly derived.Under the arbitrary loads and boundary conditions, the general bending problem of the conical shell on the elastic foundation is reduced to find the displacement function U(s,θ).The general solution of the eight-order differential equation is obtained in series form. For the symmetric bending deformation of the conical shell on the elastic foundation, which has been widely usedinpractice,the detailed numerical results and boundary influence coefficients for edge loads have been obtained. These results have important meaning in analysis of conical shell combination construction on the elastic foundation,and provide a valuable judgement for the numerical solution accuracy of some of the same type of the existing problem.  相似文献   

6.
IntroductionIt’swell_knownthatthecomplicatedfundamentalsolution[1,2 ]forHelmholtzequationΔu(x) +k2 u(x) =0  (x∈Ω:boundedopenregioninR2 )isu (x,y) =-iH(2 )0 (k x-y ) 4,thusit’snotconvenientfornumericalcomputation .IfapplyingthesimplefundamentalsolutionofLaplaceequationu 0 (x ,y) =-ln|x-y|(2π) ,theexpressionforthesolutionofequationintheclosedregion Ωisc(y)u(y) + ∫Γu(x) u 0 (x,y) nx -u 0 (x ,y) u(x) n dsx =-k2∫Ωu(x)u 0 (x,y)dΩx.Astherightsideappearstheregionalintegrationinclu…  相似文献   

7.
A plane-strain theory of an elastic solid coated with a thin elastic film on part or all of its boundary was developed recently by Steigmann and Ogden (1997a). In this paper the theory is applied to the (plane-strain) problem of a thick-walled circular cylindrical tube which is subject to both internal and external pressure and which has an elastic coating on one or both of its circular cylindrical boundaries. The effect of the coating on the symmetrical response of the annular cross-section of the tube is determined first. It is noted, in particular, that while the pressure may exhibit a maximum followed by a minimum during inflation for an uncoated tube it may be a monotonic increasing function of the radius for a coated tube with coating elastic modulus sufficiently large. Next, the possibility of bifurcation from a symmetrical configuration is examined and again the influence of the coating is analysed. The effect of a coating on the outer boundary is compared with that on the inner boundary. Specifically, during compression, coating on the outer boundary delays bifurcation compared with the uncoated case. On the other hand, when the coating is on the inner boundary, bifurcation is either delayed or advanced relative to the uncoated situation depending on the values of the bending stiffness and tube thickness parameters. Generally, bifurcation is delayed by an increase in the magnitude of the bending stiffness of the coating at fixed values of the other parameters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
A modified boundary integral equation method is used to solve a specific type of mixed boundary value problem in an enhanced theory of bending of elastic plates in which the effects of transverse shear deformation and transverse normal strain are taken into account. The problem considered is characterized by the fact that a combination of transverse displacement and bending and twisting moments is prescribed on the curve which bounds the middle surface of the plate. Both interior and exterior problems are formulated and the corresponding existence and uniqueness results derived.  相似文献   

9.
The bending problem of Euler–Bernoulli discontinuous beams is dealt with. The purpose is to show that uniform-beam Green’s functions can be used to build efficient solutions for beams with internal discontinuities due to along-axis constraints and flexural-stiffness jumps. Specifically, upon deriving the equilibrium equation in the space of generalized functions, first it is seen that the original bending problem may be recast as linear superposition of a principal and an auxiliary bending problem, both involving a uniform reference beam and homogeneous boundary conditions. Then, based on the Green’s functions of the reference beam, closed-form solutions are developed for the principal beam response, while the auxiliary beam response is obtained by solving, in general, (r + 2s) algebraic equations written at the discontinuity locations, being r the number of discontinuities due to along-axis constraints, and s the number of flexural-stiffness jumps. In this manner, an appreciable reduction of computational effort is achieved as compared to alternative analytical solutions in the literature.  相似文献   

10.
The paper presents a mechanical model of the mixed-mode bending (MMB) test used to assess the mixed-mode interlaminar fracture toughness of composite laminates. The laminated specimen is considered as an assemblage of two sublaminates partly connected by an elastic–brittle interface. The problem is formulated through a set of 36 differential equations, accompanied by suitable boundary conditions. Solution of the problem is achieved by separately considering the two subproblems related to the symmetric and antisymmetric parts of the loads, which for symmetric specimens correspond to fracture modes I and II, respectively. Explicit expressions are determined for the interfacial stresses, internal forces, and displacements.  相似文献   

11.
The method of matched asymptotic expansions is used to reduce the problem of the transverse vibrations of a highly prestressed anisotropic plate into the simpler problem of the vibration of an anisotropic membrane with modified boundary conditions that account for the bending effects. In the absence of an exact solution the membrane problem can be solved by any well-known numerical technique. The numerical-perturbation results for a clamped circular plate with rectangular orthotropy and a uniform tensile stress applied on its boundary show an excellent correlation with finite-element solutions for the original problem. Furthermore, the solutions obtained for annular plates form the basis for solutions to problems involving near-annular plates.  相似文献   

12.
以简支梯形底扁球壳的弯曲问题为例,详细阐明了准格林函数方法的思想.即利用问题的基本解和边界方程构造一个准格林函数,这个函数满足了问题的齐次边界条件,采用格林公式将简支扁球壳弯曲问题的控制微分方程化为两个互相耦合的第二类Fredholm积分方程.边界方程有多种选择,在选定一种边界方程的基础上,可以通过建立一个新的边界方程...  相似文献   

13.
14.
An elastic plate with a physically nonlinear inclusion of an arbitrary shape is considered. This plate is subjected to pure bending under the action of transverse forces and bending moments applied at the external boundary of the plate. There are no loads distributed over the surface. The problem of finding external actions that provide a necessary uniform moment state in the inclusion, i.e., prescribed constant moments and curvatures, is formulated and solved. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 104–107, September–October, 2007.  相似文献   

15.
Eringen’s two-phase local/nonlocal model is applied to an Euler-Bernoulli nanobeam considering the bending-induced axial force, where the contribution of the axial force to bending moment is calculated on the deformed state. Basic equations for the corresponding one-dimensional beam problem are obtained by degenerating from the three-dimensional nonlocal elastic equations. Semi-analytic solutions are then presented for a clamped-clamped beam subject to a concentrated force and a uniformly distributed load, respectively. Except for the traditional essential boundary conditions and those required to be satisfied by transferring an integral equation to its equivalent differential form, additional boundary conditions are needed and should be chosen with great caution, since numerical results reveal that non-unique solutions might exist for a nonlinear problem if inappropriate boundary conditions are used. The validity of the solutions is examined by plotting both sides of the original integro-differential governing equation of deflection and studying the error between both sides. Besides, an increase in the internal characteristic length would cause an increase in the deflection and axial force of the beam.  相似文献   

16.
We solve the problem on the interaction of plane harmonic waves with a thin elastic plate-shaped inclusion. The ambient medium is assumed to be in plane strain. The smooth contact conditions are satisfied on both sides of the inclusion. The bending displacements of the inclusion are determined from the corresponding differential equation. In the statement of boundary conditions for this equation, one should take into account the transverse forces and bending moments applied to the lateral edges of the inclusion, while the boundary conditions are posed on the midplane of the inclusion. Using the discontinuous solution method, we reduce the problem to a system of two singular integral equations, which are solved numerically by the mechanical quadrature method. We obtain approximate formulas for the stress intensity coefficients near the ends of the inclusion and for the transverse forces and moments applied to the inclusion.  相似文献   

17.
The problem of steady free convection boundary layer over a vertical isothermal impermeable flat plate which is embedded in a fluid-saturated porous medium with volumetric heat generation or absorption is studied in this paper using the Darcy equation model. The case of the externally prescribed source terms S = S(x,y) is considered in this paper. It is shown that the corresponding boundary value problem depends on the sign of the plate temperature, which implies that the source term breaks the usual upflow or downflow symmetry of the free convection problem. Looking for similarity solutions, analytical and numerical solutions of the transformed boundary value problem are obtained for several values of the problem parameters. It is also shown that, contrary to the widely spread opinion, the exponential form of the internal heat generation term is not a necessary requirement of similarity reduction.  相似文献   

18.
In this paper, the two fundamental differential equations for bending elastic plates with three generalized displacements are transformed into a set of boundary integral equations by Green formula. Three kinds of boundary conditions on edges have been strictly derived. So this paper gives a satisfactory method of boundary element analysis for solving the problem of bending elastic plates.  相似文献   

19.
The bending problem for an arbitrarily outlined thin plane with mixed boundary conditions is solved. A technique based on the methods of potentials and balancing loads is proposed for constructing Green’s function for the Germain-Lagrange equation. This technique ensures high accuracy of approximate solutions, which is checked against Levi’s solution for rectangular plates __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 5, pp. 104–112, May 2006.  相似文献   

20.
《力学快报》2019,9(5):312-319
In this paper, to investigate the influence of soil inhomogeneity on the bending of circular thin plates on elastic foundations, the static problem of circular thin plates on Gibson elastic foundation is solved using an iterative method based on the modified Vlasov model. On the basis of the principle of minimum potential energy, the governing differential equations and boundary conditions for circular thin plates on modified Vlasov foundation considering the characteristics of Gibson soil are derived. The equations for the attenuation parameter in bending problem are also obtained, and the issue of unknown parameters being difficult to determine is solved using the iterative method. Numerical examples are analyzed and the results are in good agreement with those form other literatures. It proves that the method is practical and accurate. The inhomogeneity of modified Vlasov foundations has some influence on the deformation and internal force behavior of circular thin plates. The effects of various parameters on the bending of circular plates and characteristic parameters of the foundation are discussed. The modified model further enriches and develops the elastic foundations. Relevant conclusions that are meaningful to engineering practice are drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号