首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let Ω be a second countable topological space and μ be a σ−finite measure on the Borel sets M{\mathcal{M}}. Let T be a nuclear operator on Lp(W,M,m){L^p({\Omega},{\mathcal{M}},\mu) }, 1 < p < ∞, in this work we establish a formula for the trace of T. A preliminary trace formula is established applying the general theory of traces on operator ideals introduced by Pietsch and a characterization of nuclear operators for σ−finite measures. We also use the Doob’s maximal theorem for martingales with the purpose of studying the kernel k(x, y) of T on the diagonal.  相似文献   

2.
In this paper we consider a nonlinear evolution reaction–diffusion system governed by multi-valued perturbations of m-dissipative operators, generators of nonlinear semigroups of contractions. Let X and Y be real Banach spaces, ${\mathcal{K}}In this paper we consider a nonlinear evolution reaction–diffusion system governed by multi-valued perturbations of m-dissipative operators, generators of nonlinear semigroups of contractions. Let X and Y be real Banach spaces, K{\mathcal{K}} be a nonempty and locally closed subset in \mathbbR ×X×YA:D(A) í X\rightsquigarrow X, B:D(B) í Y\rightsquigarrow Y{\mathbb{R} \times X\times Y,\, A:D(A)\subseteq X\rightsquigarrow X, B:D(B)\subseteq Y\rightsquigarrow Y} two m-dissipative operators, F:K ? X{F:\mathcal{K} \rightarrow X} a continuous function and G:K \rightsquigarrow Y{G:\mathcal{K} \rightsquigarrow Y} a nonempty, convex and closed valued, strongly-weakly upper semi-continuous (u.s.c.) multi-function. We prove a necessary and a sufficient condition in order that for each (t,x,h) ? K{(\tau,\xi,\eta)\in \mathcal{K}}, the next system
{ lc u¢(t) ? Au(t)+F(t,u(t),v(t))    t 3 tv¢(t) ? Bv(t)+G(t,u(t),v(t))    t 3 tu(t)=x,    v(t)=h, \left\{ \begin{array}{lc} u'(t)\in Au(t)+F(t,u(t),v(t))\quad t\geq\tau \\ v'(t)\in Bv(t)+G(t,u(t),v(t))\quad t\geq\tau \\ u(\tau)=\xi,\quad v(\tau)=\eta, \end{array} \right.  相似文献   

3.
This work is devoted to the construction of canonical passive and conservative state/signal shift realizations of arbitrary passive continuous time behaviors. By definition, a passive future continuous time behavior is a maximal nonnegative right-shift invariant subspace of the Kreĭn space L2([0,¥);W){L^2([0,\infty);\mathcal W)}, where W{\mathcal W} is a Kreĭn space, and the inner product in L2([0,¥);W){L^2([0,\infty);\mathcal W)} is the one inherited from W{\mathcal W}. A state/signal system S = (V;X,W){\Sigma=(V;\mathcal X,\mathcal W)}, with a Hilbert state space X{\mathcal X} and a Kreĭn signal space W{\mathcal W}, is a dynamical system whose classical trajectories (x, w) on [0, ∞) satisfy x ? C1([0,¥);X){x\in C^1([0,\infty);\mathcal X)}, w ? C([0,¥);W){w \in C([0,\infty);\mathcal W)}, and
([(x)\dot](t),x(t),w(t)) ? V,    t ? [0,¥), (\dot x(t),x(t),w(t))\in V,\quad t \in [0,\infty),  相似文献   

4.
We investigate the Burkholder–Gundy inequalities in a noncommutative symmetric space E(M){E(\mathcal{M})} associated with a von Neumann algebra M{\mathcal{M}} equipped with a faithful normal state. The results extend the Pisier–Xu noncommutative martingale inequalities, and generalize the classical inequalities in the commutative case.  相似文献   

5.
We propose an algorithm to sample and mesh a k-submanifold M{\mathcal{M}} of positive reach embedded in \mathbbRd{\mathbb{R}^{d}} . The algorithm first constructs a crude sample of M{\mathcal{M}} . It then refines the sample according to a prescribed parameter e{\varepsilon} , and builds a mesh that approximates M{\mathcal{M}} . Differently from most algorithms that have been developed for meshing surfaces of \mathbbR 3{\mathbb{R} ^3} , the refinement phase does not rely on a subdivision of \mathbbR d{\mathbb{R} ^d} (such as a grid or a triangulation of the sample points) since the size of such scaffoldings depends exponentially on the ambient dimension d. Instead, we only compute local stars consisting of k-dimensional simplices around each sample point. By refining the sample, we can ensure that all stars become coherent leading to a k-dimensional triangulated manifold [^(M)]{\hat{\mathcal{M}}} . The algorithm uses only simple numerical operations. We show that the size of the sample is O(e-k){O(\varepsilon ^{-k})} and that [^(M)]{\hat{\mathcal{M}}} is a good triangulation of M{\mathcal{M}} . More specifically, we show that M{\mathcal{M}} and [^(M)]{\hat{\mathcal{M}}} are isotopic, that their Hausdorff distance is O(e2){O(\varepsilon ^{2})} and that the maximum angle between their tangent bundles is O(e){O(\varepsilon )} . The asymptotic complexity of the algorithm is T(e) = O(e-k2-k){T(\varepsilon) = O(\varepsilon ^{-k^2-k})} (for fixed M, d{\mathcal{M}, d} and k).  相似文献   

6.
We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces ${L_{\omega}^{2}(\mathbb{R})}We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces Lw2(\mathbbR){L_{\omega}^{2}(\mathbb{R})} For operators M in the algebra generated by the convolutions with f ? Cc(\mathbb R){\phi \in {C_c(\mathbb {R})}} we show that [`(m(W))] = s(M){\overline{\mu(\Omega)} = \sigma(M)}, where the set Ω is determined by the spectrum of the shift S and μ is the symbol of M. For the general multipliers M we establish that [`(m(W))]{\overline{\mu(\Omega)}} is included in σ(M). A generalization of these results is given for the weighted spaces L2w(\mathbb Rk){L^2_{\omega}(\mathbb {R}^{k})} where the weight ω has a special form.  相似文献   

7.
We establish the following sufficient operator-theoretic condition for a subspace S ì L2 (\mathbbR, dn){S \subset L^2 (\mathbb{R}, d\nu)} to be a reproducing kernel Hilbert space with the Kramer sampling property. If the compression of the unitary group U(t) := e itM generated by the self-adjoint operator M, of multiplication by the independent variable, to S is a semigroup for t ≥ 0, if M has a densely defined, symmetric, simple and regular restriction to S, with deficiency indices (1, 1), and if ν belongs to a suitable large class of Borel measures, then S must be a reproducing kernel Hilbert space with the Kramer sampling property. Furthermore, there is an isometry which acts as multiplication by a measurable function which takes S onto a reproducing kernel Hilbert space of functions which are analytic in a region containing \mathbbR{\mathbb{R}} , and are meromorphic in \mathbbC{\mathbb{C}} . In the process of establishing this result, several new results on the spectra and spectral representations of symmetric operators are proven. It is further observed that there is a large class of de Branges functions E, for which the de Branges spaces H(E) ì L2(\mathbbR, |E(x)|-2dx){\mathcal{H}(E) \subset L^{2}(\mathbb{R}, |E(x)|^{-2}dx)} are examples of subspaces satisfying the conditions of this result.  相似文献   

8.
Let G be a locally compact group and μ a probability measure on G, which is not assumed to be absolutely continuous with respect to Haar measure. Given a unitary representation $\pi ,\mathcal{H}Let G be a locally compact group and μ a probability measure on G, which is not assumed to be absolutely continuous with respect to Haar measure. Given a unitary representation p,H\pi ,\mathcal{H} of G, we study spectral properties of the operator π(μ) acting on H\mathcal{H} Assume that μ is adapted and that the trivial representation 1 G is not weakly contained in the tensor product p?[`(p)]\pi\otimes \overline\pi We show that π(μ) has a spectral gap, that is, for the spectral radius rspec(p(m))r_{\rm spec}(\pi(\mu)) of π(μ), we have rspec(p(m)) < 1.r_{\rm spec}(\pi(\mu))< 1. This provides a common generalization of several previously known results. Another consequence is that, if G has Kazhdan’s Property (T), then rspec(p(m)) < 1r_{\rm spec}(\pi(\mu))< 1 for every unitary representation π of G without finite dimensional subrepresentations. Moreover, we give new examples of so-called identity excluding groups.  相似文献   

9.
Let M{\mathcal M} be a σ-finite von Neumann algebra and \mathfrak A{\mathfrak A} a maximal subdiagonal algebra of M{\mathcal M} with respect to a faithful normal conditional expectation F{\Phi} . Based on Haagerup’s noncommutative L p space Lp(M){L^p(\mathcal M)} associated with M{\mathcal M} , we give a noncommutative version of H p space relative to \mathfrak A{\mathfrak A} . If h 0 is the image of a faithful normal state j{\varphi} in L1(M){L^1(\mathcal M)} such that j°F = j{\varphi\circ \Phi=\varphi} , then it is shown that the closure of {\mathfrak Ah0\frac1p}{\{\mathfrak Ah_0^{\frac1p}\}} in Lp(M){L^p(\mathcal M)} for 1 ≤ p < ∞ is independent of the choice of the state preserving F{\Phi} . Moreover, several characterizations for a subalgebra of the von Neumann algebra M{\mathcal M} to be a maximal subdiagonal algebra are given.  相似文献   

10.
We establish uniform estimates for order statistics: Given a sequence of independent identically distributed random variables ξ 1, … , ξ n and a vector of scalars x = (x 1, … , x n ), and 1 ≤ k ≤ n, we provide estimates for \mathbb E   k-min1 £ in |xixi|{\mathbb E \, \, k-{\rm min}_{1\leq i\leq n} |x_{i}\xi _{i}|} and \mathbb E k-max1 £ in|xixi|{\mathbb E\,k-{\rm max}_{1\leq i\leq n}|x_{i}\xi_{i}|} in terms of the values k and the Orlicz norm ||yx||M{\|y_x\|_M} of the vector y x  = (1/x 1, … , 1/x n ). Here M(t) is the appropriate Orlicz function associated with the distribution function of the random variable |ξ 1|, G(t) = \mathbb P ({ |x1| £ t}){G(t) =\mathbb P \left(\left\{ |\xi_1| \leq t\right\}\right)}. For example, if ξ 1 is the standard N(0, 1) Gaussian random variable, then G(t) = ?{\tfrac2p}ò0t e-\fracs22ds {G(t)= \sqrt{\tfrac{2}{\pi}}\int_{0}^t e^{-\frac{s^{2}}{2}}ds }  and M(s)=?{\tfrac2p}ò0se-\frac12t2dt{M(s)=\sqrt{\tfrac{2}{\pi}}\int_{0}^{s}e^{-\frac{1}{2t^{2}}}dt}. We would like to emphasize that our estimates do not depend on the length n of the sequence.  相似文献   

11.
Let V be a finite dimensional p-adic vector space and let τ be an operator in GL(V). A probability measure μ on V is called τ-decomposable or m ? [(L)\tilde]0(t)\mu\in {\tilde L}_0(\tau) if μ = τ(μ)* ρ for some probability measure ρ on V. Moreover, when τ is contracting, if ρ is infinitely divisible, so is μ, and if ρ is embeddable, so is μ. These two subclasses of [(L)\tilde]0(t){\tilde L}_0(\tau) are denoted by L 0(τ) and L 0 #(τ) respectively. When μ is infinitely divisible τ-decomposable for a contracting τ and has no idempotent factors, then it is τ-semi-selfdecomposable or operator semi-selfdecomposable. In this paper, sequences of decreasing subclasses of the above mentioned three classes, [(L)\tilde]m(t) é Lm(t) é L#m(t), 1 £ m £ ¥{\tilde L}_m(\tau)\supset L_m(\tau) \supset L^\#_m(\tau), 1\le m\le \infty , are introduced and several properties and characterizations are studied. The results obtained here are p-adic vector space versions of those given for probability measures on Euclidean spaces.  相似文献   

12.
Let ${\mathcal {H}_{1}}Let H1{\mathcal {H}_{1}} and H2{\mathcal {H}_{2}} be separable Hilbert spaces, and let A ? B(H1), B ? B(H2){A \in \mathcal {B}(\mathcal {H}_{1}),\, B \in \mathcal {B}(\mathcal {H}_{2})} and C ? B(H2H1){C \in \mathcal {B}(\mathcal {H}_{2},\, \mathcal {H}_{1})} be given operators. A necessary and sufficient condition is given for ${\left(\begin{smallmatrix}A &\enspace C\\ X &\enspace B \end{smallmatrix}\right)}${\left(\begin{smallmatrix}A &\enspace C\\ X &\enspace B \end{smallmatrix}\right)} to be a right (left) invertible operator for some X ? B(H1H2){X \in \mathcal {B}(\mathcal {H}_{1},\, \mathcal {H}_{2})}. Furthermore, some related results are obtained.  相似文献   

13.
Consider a family of smooth immersions F(·,t) : Mn? \mathbbRn+1{F(\cdot,t)\,:\,{M^n\to \mathbb{R}^{n+1}}} of closed hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}} moving by the mean curvature flow \frac?F(p,t)?t = -H(p,t)·n(p,t){\frac{\partial F(p,t)}{\partial t} = -H(p,t)\cdot \nu(p,t)}, for t ? [0,T){t\in [0,T)}. We show that at the first singular time of the mean curvature flow, certain subcritical quantities concerning the second fundamental form, for example ò0tòMs\frac|A|n + 2 log (2 + |A|) dmds,{\int_{0}^{t}\int_{M_{s}}\frac{{\vert{\it A}\vert}^{n + 2}}{ log (2 + {\vert{\it A}\vert})}} d\mu ds, blow up. Our result is a log improvement of recent results of Le-Sesum, Xu-Ye-Zhao where the scaling invariant quantities were considered.  相似文献   

14.
A modification of the Lyons-Sullivan discretization of positive harmonic functions on a Riemannian manifold M is proposed. This modification, depending on a choice of constants C = {C n :n = 1,2,..}, allows for constructing measures nxCx ? M\nu_x^\mathbf{C},\ x\in M, supported on a discrete subset Γ of M such that for every positive harmonic function f on M
f(x)=?g ? Gf(g)nCx(g). f(x)=\sum_{\gamma\in\Gamma}f(\gamma)\nu^{\mathbf{C}}_x(\gamma).  相似文献   

15.
Given a Hilbert space (H,á·,·?){(\mathcal H,\langle\cdot,\cdot\rangle)}, and interval L ì (0,+¥){\Lambda\subset(0,+\infty)} and a map K ? C2(H,\mathbb R){K\in C^2(\mathcal H,\mathbb R)} whose gradient is a compact mapping, we consider the family of functionals of the type:
I(l,u)=\dfrac12áu,u?-lK(u),    (l,u) ? L×H.I(\lambda,u)=\dfrac12\langle u,u\rangle-\lambda K(u),\quad (\lambda,u)\in\Lambda\times\mathcal H.  相似文献   

16.
The aim of the present paper is to study a nonlinear stochastic integral equation of the form
x(t; w) = h(t, x(t; w)) + \mathop \smallint 0t k1 (t, t; w)f1 (t, x(t; w))dt+ \mathop \smallint 0t k2 (t, t; w)f2 (t, x(t; w))db(t; w)x(t; \omega ) = h(t, x(t; \omega )) + \mathop \smallint \limits_0^t k_1 (t, \tau ; \omega )f_1 (\tau , x(\tau ; \omega ))d\tau + \mathop \smallint \limits_0^t k_2 (t, \tau ; \omega )f_2 (\tau , x(\tau ; \omega ))d\beta (\tau ; \omega )  相似文献   

17.
For any atomless positive measure μ, the space L 1(μ) has the polynomial Daugavet property, i.e., every weakly compact continuous polynomial ${P:L_1(\mu)\longrightarrow L_1(\mu)}For any atomless positive measure μ, the space L 1(μ) has the polynomial Daugavet property, i.e., every weakly compact continuous polynomial P:L1(m)? L1(m){P:L_1(\mu)\longrightarrow L_1(\mu)} satisfies the Daugavet equation ||Id + P||=1 + ||P||{\|{\rm Id} + P\|=1 + \|P\|}. The same is true for the vector-valued spaces L 1(μ, E), μ atomless, E arbitrary.  相似文献   

18.
19.
Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold Σ with non-positive Yamabe invariant (Y(Σ)). As noted by Fischer and Moncrief, the reduced volume ${\mathcal{V}(k)=\left(\frac{-k}{3}\right)^{3}{\rm Vol}_{g(k)}(\Sigma)}Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold Σ with non-positive Yamabe invariant (Y(Σ)). As noted by Fischer and Moncrief, the reduced volume V(k)=(\frac-k3)3Volg(k)(S){\mathcal{V}(k)=\left(\frac{-k}{3}\right)^{3}{\rm Vol}_{g(k)}(\Sigma)} is monotonically decreasing in the expanding direction and bounded below by Vinf=(\frac-16Y(S))\frac32{\mathcal{V}_{\rm \inf}=\left(\frac{-1}{6}Y(\Sigma)\right)^{\frac{3}{2}}}. Inspired by this fact we define the ground state of the manifold Σ as “the limit” of any sequence of CMC states {(g i , K i )} satisfying: (i) k i  = −3, (ii) Viˉ Vinf{\mathcal{V}_{i}\downarrow \mathcal{V}_{\rm inf}}, (iii) Q 0((g i , K i )) ≤ Λ, where Q 0 is the Bel–Robinson energy and Λ is any arbitrary positive constant. We prove that (as a geometric state) the ground state is equivalent to the Thurston geometrization of Σ. Ground states classify naturally into three types. We provide examples for each class, including a new ground state (the Double Cusp) that we analyze in detail. Finally, consider a long time and cosmologically normalized flow ([(g)\tilde],[(K)\tilde])(s)=((\frac-k3)2g,(\frac-k3)K){(\tilde{g},\tilde{K})(\sigma)=\left(\left(\frac{-k}{3}\right)^{2}g,\left(\frac{-k}{3}\right)K\right)}, where s = -ln(-k) ? [a,¥){\sigma=-\ln (-k)\in [a,\infty)}. We prove that if [(E1)\tilde]=E1(([(g)\tilde],[(K)\tilde])) £ L{\tilde{\mathcal{E}_{1}}=\mathcal{E}_{1}((\tilde{g},\tilde{K}))\leq \Lambda} (where E1=Q0+Q1{\mathcal{E}_{1}=Q_{0}+Q_{1}}, is the sum of the zero and first order Bel–Robinson energies) the flow ([(g)\tilde],[(K)\tilde])(s){(\tilde{g},\tilde{K})(\sigma)} persistently geometrizes the three-manifold Σ and the geometrization is the ground state if Vˉ Vinf{\mathcal{V}\downarrow \mathcal{V}_{\rm inf}}.  相似文献   

20.
In (Ann Sc ENS Sér 3 4:361–380, 1887) Guichard proved that, for any holomorphic function g on ${{\mathbb C}}In (Ann Sc ENS Sér 3 4:361–380, 1887) Guichard proved that, for any holomorphic function g on \mathbb C{{\mathbb C}}, there exists a holomorphic function h (on \mathbb C{{\mathbb C}}) such that h - h °t = g{h - h \circ \tau = g} where τ is the translation by 1 on \mathbb C{{\mathbb C}}. In this note we prove an analogous of this theorem in a more general situation. Precisely, let (M,F){(M,{\mathcal F})} be a complex simple foliation whose leaves are simply connected non compact Riemann surfaces and γ an automorphism of F{{\mathcal F}} which fixes each leaf and acts on it freely and properly. Then, the vector space HF(M){{\mathcal H}_{\mathcal F}(M)} of leafwise holomorphic functions is not reduced to functions constant on the leaves and for any g ? HF(M){g \in {\mathcal H}_{\mathcal F}(M)}, there exists h ? HF(M){h \in {\mathcal H}_{\mathcal F}(M)} such that h - h °g = g{h - h \circ \gamma = g}. From the proof of this theorem we derive a foliated version of Mittag–Leffler Theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号