首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LES studies of the flow in a swirl gas combustor   总被引:4,自引:0,他引:4  
Environmental and other practical concerns have led to the development of compact gas turbine combustors burning lean mixtures leading to potentially low CO and NOx emissions. The compact design requires efficient atomization and mixing together with a compact premixed flame. Associated with these requirements are higher temperatures, increased heat transfer, and thermal load, thus increasing the danger of combustion instabilities (causing performance deterioration and excessive mechanical loads), and possible off-design operation. Numerical simulations of reacting flows are well suited to address these issues. To this end, large eddy simulation (LES) is particularly promising. The philosophy behind LES is to explicitly simulate the large scales of the flow and the thermochemistry, affected by boundary conditions whilst modeling only the small scales, including the interaction between the flow and the combustion processes. Here, we examine the flow and the flame in a model gas turbine combustor (General Electric’s lean premixed dry low NOx LM6000) to evaluate the potential of LES for design studies of engineering applications and to study the effects of the combustor confinement geometry on the flow and on the flame dynamics. Two LES models, a Monotone Integrated LES model with 1 and 2 step Ahrrenius chemistry, and a fractal flame-wrinkling LES model coupled to a conventional one-equation eddy-viscosity subgrid model, are used. Reasonable agreement is found when comparing predictions with experimental data and with other LES computations of the same case. Furthermore, the combustor confinement geometry is found to strongly affect the vortical flow, and hence also the flame and its dynamics.  相似文献   

2.
Large-eddy simulation of evaporating spray in a coaxial combustor   总被引:1,自引:0,他引:1  
Large-eddy simulation of an evaporating isopropyl alcohol spray in a coaxial combustor is performed. The Favre-averaged, variable density, low-Mach number Navier-Stokes equations are solved on unstructured grids with dynamic subgrid scale model to compute the turbulent gas-phase. The original incompressible flow algorithm for LES on unstructured grids by [Mahesh et al., J. Comp. Phys. 197 (2004) 215–240] is extended to include density variations and droplet evaporation. An efficient particle-tracking scheme on unstructured meshes is developed to compute the dispersed phase. Experimentally measured droplet size distribution and size-velocity correlation near the nozzle exit are used as the inlet conditions for the spray. The predictive capability of the LES approach on unstructured grids together with Lagrangian droplet dynamics models to capture the droplet dispersion characteristics, size distributions, and the spray evolution is examined in detail. The mean and turbulent quantities for the gas and particle phases are compared to experimental data to show good agreement. It is shown that for low evaporation rates considered in the present study, a well resolved large-eddy simulation together with simple subgrid models for droplet evaporation and motion provides good agreement of the mean and turbulent quantities for the gas and droplet phases compared to the experimental data. This work represents an important first step to assess the predictive capability of the unstructured grid LES approach applied to spray vaporization. The novelty of the results presented is that they establish a baseline fidelity in the ability to simulate complex flows on unstructured grids at conditions representative of gas-turbine combustors.  相似文献   

3.
Large eddy simulation of bluff-body stabilized swirling non-premixed flames   总被引:1,自引:0,他引:1  
Large eddy simulations (LES) using a subgrid mixing and combustion model are carried out to study two bluff-body stabilized swirling non-premixed flames (SM1 and SMA2). The similarities and differences between the two flames are highlighted and discussed. Flow features, such as, the recirculation zone (RZ) size and the flame structure are captured accurately in both cases. The SM1 flame shows a toroidal RZ just behind the bluff body and a vortex breakdown bubble (VBB) downstream. In addition, a highly rotational non-recirculating region in-between the RZ and VBB is observed as well. On the other hand, the SMA2 shows a single elongated recirculation zone downstream the bluff body. Flame necking is observed downstream the bluff body for the SM1 flame but not for the SMA2 flame. The time-averaged velocity and temperature comparison also shows reasonable agreement. The study shows that the sensitivity of the flame structure to inflow conditions can be captured in the present LES without requiring any model changes.  相似文献   

4.
Direct Numerical Simulation (DNS) data on high pressure H2/O2 and H2/air flames using the compressible flow formulation, detailed kinetics, a real fluid equation of state, and generalised diffusion are analysed. The DNS is filtered over a range of filter widths to provide exact terms in the Large Eddy Simulation (LES) governing equations, including unclosed terms. The filtered pressure and the filtered heat flux vector are extensively compared with the pressure and the heat flux vector calculated as a function of the filtered primitive variables (i.e. the exact LES term is compared with its form available within an actual LES). The difference between these forms defines the subgrid pressure and the subgrid heat flux vector. The analyses are done both globally across the entire flame, as well as by conditionally averaging over specific regions of the flame; including regions of large subgrid kinetic energy, subgrid scalar dissipation, subgrid temperature variance, flame temperature, etc. In this work, although negligible for purely mixing cases, the gradient of the subgrid pressure is shown to be of the same order as, and larger than, the corresponding divergence of the turbulent subgrid stresses for reacting cases. This is despite the fact that all species behave essentially as ideal gases for this flame and holds true even when the ideal gas law is used to calculate the pressure. The ratio of the subgrid pressure gradient to the subgrid stress tensor divergence is shown to increase with increasing Reynolds number. Both the subgrid heat flux vector and its divergence are found to be substantially larger in reacting flows in comparison with mixing due to the associated larger temperature gradients. However, the divergence of the subgrid heat flux vector tends to be significantly smaller than other unclosed terms in the energy equation with decreasing significance with increasing Reynolds number.  相似文献   

5.
Large Eddy Simulations (LES) of kerosene spray combustion in an axial-swirl combustor have been carried out focusing on the effect of the evaporating droplets on the flame temperature and species concentrations. The LES-PDF methodology is used for both dispersed (liquid) and gas phases. The liquid phase is described using a Lagrangian formulation whilst an Eulerian approach is employed for the gas phase. The predictive capability of LES with sub-grid scale models for spray dispersion and evaporation is assessed placing emphasis on the effect of the unresolved velocity and temperature fields on the droplet evaporation rate. The results of the fully coupled LES formulation exhibit good agreement between the measured and simulated mean velocity fields. The global behaviour of the spray combustion, such as droplet dispersion and evaporation, are captured reasonably well in the simulations. It was found that the large velocity fluctuations observed in the shear layer strongly affect the evaporation rate and thus the temperature distributions. The present work also demonstrated the feasibility of LES to study complex flow features which are typical of gas-turbine combustion chambers.  相似文献   

6.
An effective partially premixed flamelet model for large eddy simulation (LES) of turbulent spray combustion is formulated. Different flame regimes are identified with a flame index defined by budget terms in a 2-D multi-phase flamelet formulation, and the application in LES of partially pre-vaporized spray flames shows a favorable agreement with experiments. Simulations demonstrate that, compared to the conventional single-regime flamelets, the present partially premixed flamelet formulation shows its ability in capturing the subgrid regime transitions, yielding a well prediction of peak gas temperature and the downstream flame spreading. A propagating premixed flame front is found coupled with a trailing diffusion burning through the spray evaporation, and the spray effect on regime discrimination is manifested with transport budget analysis. A two-phase regime indicator is then proposed, by which the evaporation-dictated regime is properly described. Its intended use will rely on both gas and spray flamelet structures.  相似文献   

7.
CFD analysis of the HyShot II scramjet combustor   总被引:1,自引:0,他引:1  
The development of novel air-breathing engines such as supersonic combustion ramjets (scramjets) depends on the understanding of supersonic mixing, self-ignition and combustion. These aerothermochemical processes occur together in a scramjet engine and are notoriously difficult to understand. In the present study, we aim at analyzing the HyShot II scramjet combustor mounted in the High Enthalpy Shock Tunnel Göttingen (HEG) by using Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) models with detailed and reduced chemistry. To account for the complicated flow in the HEG facility a zonal approach is adopted in which RANS is used to simulate the flow in the HEG nozzle and test-section, providing the necessary inflow boundary conditions for more detailed RANS and LES of the reacting flow in the HyShot combustor. Comparison of predicted wall pressures and heat fluxes with experimental data show good agreement, and in particular does the LES agree well with the experimental data. The LES results are used to elucidate the flow, mixing, self-ignition and subsequent combustion processes in the combustor. The combustor flow can be separated into the mixing zone, in which turbulent mixing from the jet-in-cross flow injectors dominates, the self-ignition zone, in which self-ignition rapidly takes place, and the turbulent combustion zone, located towards the end of the combustor, in which most of the heat release and volumetric expansion takes place. Self-ignition occurs at some distance downstream of the injectors, resulting in a distinct pressure rise further downstream due to the volumetric expansion as observed in the experiments. The jet penetration is about 30% of the combustor height and the combustion efficiency is found to be around 83%.  相似文献   

8.
A Large Eddy Simulation (LES) model capable of accurately representing finite-rate chemistry effects in turbulent premixed combustion is presented. The LES computations use finite-rate chemistry and implicit LES combustion modelling to simulate an experimentally well-documented lean-premixed jet flame stabilized by a stoichiometric pilot. The validity of the implicit LES assumption is discussed and criteria are expressed in terms of subgrid scale Damköhler and Karlovitz numbers. Simulation results are compared to experimental data for velocity, temperature and species mass fractions of CH4, CO and OH. The simulation results highlight the validity and capability of the present approach for the flame and in general the combustion regime examined. A sensitivity analysis to the choice of the finite-rate chemistry mechanism is reported, this analysis indicates that the one and two-step global reaction mechanisms evaluated fail to capture the reaction layer with sufficient accuracy, while a 20-species skeletal mechanism reproduces the experimental observations accurately including the key finite-rate chemistry indicators CO and OH. The LES results are shown to be grid insensitive and that the grid resolution within the bounds examined is far less important compared to the sensitivity of the finite-rate chemistry representation. The results are analyzed in terms of the flame dynamics and it is shown that intense small scale mixing (high Karlovitz number) between the pilot and the jet is an important mechanism for the stabilization of the flame.  相似文献   

9.
Diesel spray and combustion in a constant-volume engine cylinder was simulated by a large eddy simulation (LES) approach coupling with a multicomponent vapourisation (MCV) modelling. The simulation focused on the inclusion of the interaction between fuel spray and gas-phase turbulence flow at the sub-grid scale. The LES was based on the dynamic structure sub-grid model, and an additional source term was added to the filtered momentum equation to account for the effect of drop motion on the gas-phase turbulence. The multicomponent drop vapourisation modelling was based on the continuous thermodynamics approach using a gamma distribution to describe the complex diesel fuel composition and was capable of predicting a more complex drop vapourisation process. The effect of gas-phase turbulence flow on the fuel drop vapourisation process was evaluated through the solution of the gas-phase moments of the distribution in the present LES framework. A non-evaporative spray in a constant-volume engine cylinder was first simulated to examine the behaviours of LES, in comparison with a Reynolds-averaged Navier–Stokes (RANS) simulation based on the RNG k? model. More realistic diesel spray structures and improved agreement on liquid penetration length with the corresponding experimental data were predicted by the LES, using a grid resolution close to that of RANS. A more comprehensive simulation of diesel spray and combustion in cylindrical combustor was also performed. Predicted distributions of soot particles were compared to the experimental image, and improved agreement with the experimental data was also observed by using the present LES and MCV models. Consequently, results of the present models proved that improved overall performance of the fuel spray simulation can be achieved by the LES without a significant increase in the computational load compared to the RANS.  相似文献   

10.
本文采用基于MPI的并行算法,采用动态内存分配、分区算法和多点重合交错网格系统,在贴体网格下对带V形槽稳定器模型加力燃烧室素流化学反应流场进行数值模拟,湍流模型采用k方程亚网格尺度模型,燃烧模型采用亚网格EBU模型,采用热通量辐射模型估算辐射通量。计算结果表明并行计算对复杂形状的化学反应流动计算效率很高,是模拟大规模的燃烧问题的有力工具。  相似文献   

11.
Large eddy simulation (LES) is used to investigate three-dimensional (3D) lean premixed turbulent methane–air flames in the thin-reaction-zone regime. In this regime, the Kolmogorov scale is smaller than the preheat zone thickness, but larger than the reaction zone thickness. Past numerical studies of similar flames were primarily direct numerical simulation either in two-dimensions or using the artificially thickened flame approach in 3D. For an LES the effect of small (unresolved) scales on the scalar field must be, modeled accurately to capture the correct flame structure. A subgrid combustion model based on the linear-eddy-mixing (LEM) model is used within an LES framework (called LEM–LES hereafter) to capture the 3D flame-structure of the highly stretched premixed flames. A finite-rate, one-step methane–air chemistry with a non-unity Lewis number formulation is used in this study. The simulated flame structure resembles flames experimentally studied in the thin-reaction-zone regime. Even though the preheat zone is broadened by the penetration of small eddies, the chemical reaction zone remains thin and localized. This feature is captured properly in the current LEM–LES approach. The flame structure and other statistics such as the flame area evolution, curvature, and strain-rate statistics computed using the LEM–LES are also in good agreement with the past DNS studies.  相似文献   

12.
The performance of a dynamic subgrid model for the turbulent burning speed of a premixed flame is investigated for a series of idealized test cases where the flame front is wrinkled by a multiple-scale shear flow; a rigorous asymptotic subgrid model is also implemented for comparison. Explicit formulae for the flame wrinkled shape and turbulent speed are available to generate a reference database. The role of the subgrid wrinkling models is to achieve the same overall flame shape and propagation speed in a simulation where only the largest scales of the flow are explicitly accounted for. Very good results are obtained when the subgrid burning speed enhancement is estimated using the asymptotic subgrid model. On the other hand, the dynamic model attempts to exploit the scaling observable in the simulation to extrapolate the turbulent burning speed enhancement in the original system. The performance of this strategy is adequate for some regimes but poor for others; the source of the problem is traced back to the existence of a scaling transition that occurs as the flame propagating speed is adjusted during the large-eddy simulation. A modification to the scaling of the enhanced burning is implemented to account for the existence of the two distinct scaling ranges; it improves significantly the predictions of the dynamic model away from the transition, but results in the near-critical range remain predictably very poor compared with the rigorous asymptotic model results. These conclusions based on a priori performance for the reference steady data are confirmed by comparing unsteady large-eddy and direct simulations. Results based on rigorous mathematical tools are possible here because of the separation of length scales in the special class of idealized flow fields used in this study: their relevance to more realistic flows is also discussed.  相似文献   

13.
A premixed propane–air flame stabilised on a triangular bluff body in a model jet-engine afterburner configuration is investigated using large-eddy simulation (LES). The reaction rate source term for turbulent premixed combustion is closed using the transported flame surface density (TFSD) model. In this approach, there is no need to assume local equilibrium between the generation and destruction of subgrid FSD, as commonly done in simple algebraic closure models. Instead, the key processes that create and destroy FSD are accounted for explicitly. This allows the model to capture large-scale unsteady flame propagation in the presence of combustion instabilities, or in situations where the flame encounters progressive wrinkling with time. In this study, comprehensive validation of the numerical method is carried out. For the non-reacting flow, good agreement for both the time-averaged and root-mean-square velocity fields are obtained, and the Karman type vortex shedding behaviour seen in the experiment is well represented. For the reacting flow, two mesh configurations are used to investigate the sensitivity of the LES results to the numerical resolution. Profiles for the velocity and temperature fields exhibit good agreement with the experimental data for both the coarse and dense mesh. This demonstrates the capability of LES coupled with the TFSD approach in representing the highly unsteady premixed combustion observed in this configuration. The instantaneous flow pattern and turbulent flame behaviour are discussed, and the differences between the non-reacting and reacting flow are described through visualisation of vortical structures and their interaction with the flame. Lastly, the generation and destruction of FSD are evaluated by examining the individual terms in the FSD transport equation. Localised regions where straining, curvature and propagation are each dominant are observed, highlighting the importance of non-equilibrium effects of FSD generation and destruction in the model afterburner.  相似文献   

14.
A large-eddy simulation (LES) model with a new localized dynamic subgrid closure for the magnetohydrodynamics (MHD) equations is used to investigate plasma-assisted combustion in supersonic flow. A 16-species and 74-reactions kinetics model is used to simulate hydrogen-air combustion and high-temperature air dissociation. The numerical model is validated with experimental data for non-reacting and reacting supersonic flow over a rearward-facing step. The creation of a plasma source near the step corner is shown to have a strong localized effect with the high temperature region resulting in an increase of the radical species concentration in the mixing region. This has the potential for enhancing combustion. In addition, downstream fuel–air mixing is improved, primarily by the creation of a strong baroclinic torque effect in the near field of the plasma source. Furthermore, by adding an uniform external magnetic field, the Lorentz force effect helps to further enhance mixing by lifting the shear layer and increasing fuel penetration by approximately 20%.  相似文献   

15.
This paper utilises large eddy simulation (LES) to study swirling reacting flows by comparison with experimental observations. The purpose is to provide further insights in engineering designs, as well as to improve modelling. A reduced-scale swirl burner has been developed for the experiments. Comparison of particle image velocimetry (PIV) measurements with LES results using finite rate chemistry shows that LES captures all the salient features of an unconfined flame including velocity and temperature distributions. However, when the flame is confined within a cylindrical combustor, the simulated flame shape is initially not consistent with experimental observation. Investigations show that the discrepancy is caused by the often practised assumption of adiabatic wall temperature. With the use of an assumed wall temperature distribution guided by laboratory observation, results of LES are consistent with experiments. Although the latter LES approach requires more computational resources, the improvement is found to be justified.  相似文献   

16.
Large-eddy simulation of an atomizing spray issuing from a gas-turbine injector is performed. The filtered Navier–Stokes equations with dynamic subgrid scale model are solved on unstructured grids to compute the swirling turbulent flow through complex passages of the injector. The collocated grid, incompressible flow algorithm on arbitrary shaped unstructured grids developed by Mahesh et al. (J. Comp. Phys. 197 (2004) 215–240) is used in this work. A Lagrangian point-particle formulation with a stochastic model for droplet breakup is used for the liquid phase. Following Kolmogorov’s concept of viewing solid particle-breakup as a discrete random process, the droplet breakup is considered in the framework of uncorrelated breakup events, independent of the initial droplet size. The size and number density of the newly produced droplets is governed by the Fokker–Planck equation for the evolution of the pdf of droplet radii. The parameters of the model are obtained dynamically by relating them to the local Weber number and resolved scale turbulence properties. A hybrid particle-parcel is used to represent the large number of spray droplets. The predictive capability of the LES together with Lagrangian droplet dynamics models to capture the droplet dispersion characteristics, size distributions, and the spray evolution is examined in detail by comparing it with the spray patternation study for the gas-turbine injector. The present approach is computationally efficient and captures the global features of the fragmentary process of liquid atomization in complex configurations.  相似文献   

17.
基于PDF-LES模型的凹腔支板火焰稳定器模拟   总被引:1,自引:0,他引:1  
航空发动机加力燃烧室有进口气体温度高、速度高、湍流度大的特点,是极为典型的湍流与燃烧相互耦合的工况。大涡模拟(LES)兼具高精度与合理计算量两个特点,概率密度函数模型(PDF)适用于湍流与复杂化学反应相互耦合的问题。本文在基于PDF-LES的Aero Engine Combustor Simulation Code(AECSC)程序基础上,对凹腔支板火焰稳定器进行数值模拟。使用气相版本对有无凹腔支板结构分别进行三个速度入口条件下的甲烷湍流燃烧模拟,并用两相版本对带凹腔支板结构进行设计工况下煤油喷雾的模拟。结果表明:凹腔结构的火焰稳定性要优于无凹腔结构;凹腔支板结构对于液相燃料的控制能力较气相更强。  相似文献   

18.
A probability density function (PDF) approach to account for turbulence–chemistry interaction in the context of large eddy simulation (LES) based simulation of scramjets is developed. To solve the high-dimensional joint-composition PDF transport equation robustly, the semi-discrete quadrature method of moments (SeQMOM) is employed. The SeQMOM approach addresses key numerical issues in LES related to the inaccuracies in computing filter-scale gradients, enabling an efficient and numerically consistent solution of the PDF transport equation. The computational tool is used to simulate a cavity-stabilized Mach 2.2 supersonic combustor. The LES–SeQMOM approach captures the pressure profiles qualitatively, in spite of the large uncertainties in the boundary conditions. Further, this flow configuration is found to exhibit low-frequency dynamics that lead to oscillatory motions of the shock-system inside the combustor. Detailed analyses of the LES data are used to describe the physical mechanism leading to these oscillations.  相似文献   

19.
When operating under lean fuel–air conditions, flame flashback is an operational safety issue in stationary gas turbines. In particular, with the increased use of hydrogen, the propagation of the flame through the boundary layers into the mixing section becomes feasible. Typically, these mixing regions are not designed to hold a high-temperature flame and can lead to catastrophic failure of the gas turbine. Flame flashback along the boundary layers is a competition between chemical reactions in a turbulent flow, where fuel and air are incompletely mixed, and heat loss to the wall that promotes flame quenching. The focus of this work is to develop a comprehensive simulation approach to model boundary layer flashback, accounting for fuel–air stratification and wall heat loss. A large eddy simulation (LES) based framework is used, along with a tabulation-based combustion model. Different approaches to tabulation and the effect of wall heat loss are studied. An experimental flashback configuration is used to understand the predictive accuracy of the models. It is shown that diffusion-flame-based tabulation methods are better suited due to the flashback occurring in relatively low-strain and lean fuel–air mixtures. Further, the flashback is promoted by the formation of features such as flame tongues, which induce negative velocity separated boundary layer flow that promotes upstream flame motion. The wall heat loss alters the strength of these separated flows, which in turn affects the flashback propensity. Comparisons with experimental data for both non-reacting cases that quantify fuel–air mixing and reacting flashback cases are used to demonstrate predictive accuracy.  相似文献   

20.
Large eddy simulation (LES) is applied to a pulverized coal jet flame ignited by a preheated gas flow. The simulation results are compared to experimental data obtained for the inlet stoichiometric ratios of 0.14, 0.22, and 0.36. An accurate and computationally inexpensive devolatilization model suitable for combustion simulation in LES is proposed and incorporated into the LES. The numerical results of gas temperature and coal burnout on the centerline show good agreement with the experimental data. Two kinds of lift-off heights are introduced to verify the combustion simulation. One is the height from the primary nozzle exit to the starting point of the growing flame region. The other is the height from the primary nozzle exit to the starting point of the continuous flame region. The calculated results of the two lift-off heights show good agreement with the experimental data. In contrast to LES, the standard kε model overestimates the lift-off heights because it calculates time-averaged temperature which does not contain information about local flame structure. The stoichiometric ratio in the gas phase at the starting point of the growing flame region is found to be independent of the inlet stoichiometric ratio in the range from 0.14 to 0.36.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号