首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first vertical ionization potentialsI(ns) of 69 monosulfides XSY (X, Y=H, Hal, organic, or heteroorganic substituent) are related to the inductive σI resonance (σ R + ) and polarizability (σα) constants of the substituents by dependences of theI(nS)=a+bΣσI+bΣσR+bΣσα type. TheI(ns) values are also affected by hyperconjugation which increases on going from XSH to XSY (Y≠H) compounds. The first calculations of the σ R + parameters characterizing the conjugation of Si-, Ge-, Sn-, and Pb-containing substituents with the S.+ radical cation center are reported. The reasons for weakening of resonance donor properties of heteroorganic substituents of the +M-type in the systems studied as compared to those of the same substituents in the corresponding aromatic radical cations are considered. Translated fromIzvestiya Akademii Nauk. Seriya Khmicheskaya, No. 1, pp. 25–31, January, 2000.  相似文献   

2.
The first vertical ionization potentialsI(ns) of 69 monosulfides XSY (X, Y=H, Hal, organic, or heteroorganic substituent) are related to the inductive σI resonance (σ R + ) and polarizability (σα) constants of the substituents by dependences of theI(nS)=a+bΣσI+bΣσR+bΣσα type. TheI(ns) values are also affected by hyperconjugation which increases on going from XSH to XSY (Y≠H) compounds. The first calculations of the σ R + parameters characterizing the conjugation of Si-, Ge-, Sn-, and Pb-containing substituents with the S.+ radical cation center are reported. The reasons for weakening of resonance donor properties of heteroorganic substituents of the +M-type in the systems studied as compared to those of the same substituents in the corresponding aromatic radical cations are considered. Translated fromIzvestiya Akademii Nauk. Seriya Khmicheskaya, No. 1, pp. 25–31, January, 2000.  相似文献   

3.
The title compounds, (NH4)2[MnII(edta)(H2O)]·3H2O (H4edta = ethylenediamine-N,N,N′,N′-tetraacetic acid), (NH4)2[MnII(cydta)(H2O)]·4H2O (H4cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid) and K2[MnII(Hdtpa)]·3.5H2O (H5dtpa = diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid), were prepared; their compositions and structures were determined by elemental analysis and single-crystal X-ray diffraction technique. In these three complexes, the Mn2+ ions are all seven-coordinated and have a pseudomonocapped trigonal prismatic configuration. All the three complexes crystallize in triclinic system in P-1 space group. Crystal data: (NH4)2[MnII(edta)(H2O)]·3H2O complex, a = 8.774(3) ?, b = 9.007(3) ?, c = 13.483(4) ?, α = 80.095(4)°, β = 80.708(4)°, γ = 68.770(4)°, V = 972.6(5) ?3, Z = 2, D c = 1.541 g/cm3, μ = 0.745 mm−1, R = 0.033 and wR = 0.099 for 3406 observed reflections with I ≥ 2σ(I); (NH4)2[MnII(cydta)(H2O)]·4H2O complex, a = 8.9720(18) ?, b = 9.4380(19) ?, c = 14.931(3) ?, α = 76.99(3)°, β = 83.27(3)°, γ = 75.62(3)°, V = 1190.8(4)?3, Z = 2, D c = 1.426 g/cm3, μ = 0.625 mm−1, R = 0.061 and wR = 0.197 for 3240 observed reflections with I ≥ 2σ(I); K2[MnII(Hdtpa)]·3.5H2O complex, a = 8.672(3) ?, b = 9.059(3) ?, c = 15.074(6) ?, α = 95.813(6)°, β = 96.665(6)°, γ = 99.212(6)°, V = 1152.4(7) ?3, Z = 2, D c = 1.687 g/cm3, μ = 1.006 mm−1, R = 0.037 and wR = 0.090 for 4654 observed reflections with I ≥ 2σ(I). Original Russian Text Copyright ? 2008 by X. F. Wang, J. Gao, J. Wang, Zh. H. Zhang, Y. F. Wang, L. J. Chen, W. Sun, and X. D. Zhang The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 49, No. 4, pp. 753–759, July–August, 2008.  相似文献   

4.
The first vertical ionization potentials (I) of halides HalX (Hal = Cl, Br, I; X is an inorganic or organic substituent) are linearly related to the inductive (I), resonance (R +), and polarizability () constants of the substituents X (I = a + bI + cR + + d). As the atomic number of the Hal element in the Hal·+X radical cations increases, the inductive interaction is strengthened while the polarizability interaction is weakened. Conjugation remains virtually independent of the Hal atom. The resonance R +-constants of the MX3 (M = Si, Ge, Sn, Pb) substituents bound to the Hal·+ radical cation centers were first calculated.  相似文献   

5.
The title compound, [Zn(pytpy)2][NO3]2·2H2O (pytpy = 4′-(4-pyridyl)-2,2′: 6′,2″-terpyridine), has been synthesized by the reaction of Zn(NO3)2·6H2O with pytpy, and its crystal structure was determined by single-crystal X-ray diffraction. The crystal belongs to tetragonal space group P43 with a = 0.90873(8) nm, b = 0.90873(8) nm, c = 4.4741(6) nm, V = 3.6946(7) nm3, Z = 4, D c = 1.521 g/cm−3, μ = 0.736 mm−1, F(000) = 1744, R = 0.0871, wR = 0.1302 for 5553 observed reflections with I > 2σ(I). X-ray analysis has revealed that the ZnII ion is surrounded by six N atoms from two pytpy ligands leading to a distorted octahedral geometry. In the crystal structure there are numerous strong intermolecular and intramolecular H-bonds and π-π interactions.  相似文献   

6.
    
A hydrothermal reaction of a mixture of Y(NO3)3, 1,2-benzenedicarboxylic acid (1,2-BDC) and NaOH gives rise to a new yttrium phthalate coordination polymer, [Y4H2O2C8H4O4)6],I. The Y ions inI are present in four different coordination environments with respect to the oxygen atoms (CN6 = octahedral, CN7 = pentagonal bipyramid, CN8 = dodecahedron and CN9 = capped square anti-prism). The oxygen atoms of the 1,2-BDC are fully deprotonated, and show variations in their connectivity with Y atoms. The Y atoms themselves are connected through their vertices forming infinite Y-O-Y one-dimensional chains. The Y-O-Ychains are cross-linked by the 1,2-BDC anions forming a corrugated layer structure. The layers are supported by favourableπ…π interactions between the benzene rings of the 1,2-BDC anions. The variations in the coordination environment of the Y atoms and the presence of Y-O-Y interactions along with the favourableπ…π interactions between the benzene rings from different layers are noteworthy structural features. Crystal data: triclinic, space group =P−1 (no. 2),a = 12.6669 (2),b = 13.8538 (2),c = 16.0289 ?,α = 75.20 (1),β = 69.012 (1),γ= 65.529 (1)°,V = 2371.28 (7) ?3,D calc = 1.922 g cm−1, μ(MoKα) = 4.943 mm−1. A total of 9745 reflections collected and merged to give 6566 unique reflections (R int = 0.0292) of which 5252 withI>2σ(I) were considered to be observed. FinalR 2 = 0.0339,wR 2 = 0.0724 andS = 1.036 were obtained for 704 parameters. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   

7.
The title compound (C20H18FN3O2, Mr = 351.37) is prepared and its crystal structure is determined by single crystal X-ray diffraction. The crystal is tetragonal, the P-42(1)c space group with a = 11.0922(6) ?, b = 11.0922(6) ?, c = 28.6271(15) ?, V = 3522.2(3) ?3, Z = 8, d x = 1.325 g/cm3, F(000) = 1472, μ = 0.095 mm−1, MoK α radiation (λ = 0.71073), R = 0.0505, wR = 0.1090 for 2433 observed reflections with I > 2σ(I). The X-ray diffraction analysis reveals that all ring atoms in the benzo[4,5]furo[3,2-d]pyrimidinone moieties are almost coplanar.  相似文献   

8.
The conformational stabilities of the α- and β-substituted enamines and vinyl ethers were predicted by orbital phase theory and confirmed by ab initio molecular orbital calculations. Cyclic interaction significantly occurs among the nonbonding orbital n Y for the lone pair on the hetero atom Y (N in the enamines or O in the ethers), the π and π* orbitals of the CC bond, and the σC-H or σ*C-X orbitals on the substituent CH2X. The cyclic -n Y-π-σC-H-π*- interaction is favored by the orbital phase continuity in the α-substituted molecules, while the cyclic -n Y-π-σ*C-X-π*- interaction is favored in the β-substituted molecules. The most stable conformation was then predicted to be synperiplanar or (pseudo)equatorial in the α-substituted molecules and anticlinical or (pseudo)axial in the β-substituted molecules. Received: 8 May 1998 / Accepted: 30 July 1998 / Published online: 16 November 1998  相似文献   

9.
The first vertical ionization potentialsl 1 of molecules RπX (X=Ph, H2C=CH, and HC≡C) depend on the joint influence of the inductive, resonance, and polarizability effects of substituents X, which are characterized by parameters σ1, σR+, and σα, respectively. The mechanism of conjugation in radical cations formed upon ionization of RπX is changed as compared to neutral RπX molecules, while the substituent X becomes polarized. The conjugation and polarizability effects are strenthened in the sequence Ph < H2C=CH <HC≡C as Rπ changes from Ph to H2C=CH and HC≡C. The σR+ parameters of Si-, Ge-, and Sn-containing substituents X are dependent on the type of Rπ but are connected by linear dependences in the series of benzene, ethylene, and acetylene derivatives. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1481–1486, August, 1998.  相似文献   

10.
Unlike theE HOMO energies, the first vertical ionization potentials (I 1) of monosubstituted ethylenes dependen not only on both the inductive and resonance effects but also on the polarizability of the substituents, which can be characterized by the σα parameters. The σ R + , σ p + , and σα parameters for 12 silicon-, germanium-, and tin-containing groups were determined using the equations relating theI 1 values and the σI, σ R + , σ p + and σα parameters of the substituents in the molecules of organic compounds. The conjugation of organoelemental substituents with the double bond is stronger than that with benzene ring; the σ R + parameters in the ethylene and benzene series are related by a linear dependence. Translated fromIzvestiya Akademii Nauk Seriya Khimicheskaya, No. 9, pp. 1626–1631, September, 1997.  相似文献   

11.
A new compound [MNII(Phen)3]2+(B6H7)2 is synthesized; its crystal structure is studied by XRD at 100 K. Crystallographic data: C36H38B12N6Mn, M = 739.39, triclinic symmetry, space group P , unit cell parameters: a = 10.3131(3) ?, b = 13.4839(4) ?, c = 15.1132(4) ?; α = 97.696(1)°, β = 108.324(1)°, γ = 102.211(1)°; V = 1903.9(1) ?3, Z = 2, d calc = 1.290 g/cm3. The structure is solved by direct and Fourier methods and refined by full-matrix LSM in the anisotropic (isotropic for hydrogen atoms) approximation to the final factor R 1 = 0.036 for 10169 I hkl ≥ 2σ I (Bruker-Nonius X8 APEX CCD diffractometer, λMoK α). The structure contains two crystallographically different anions. Original Russian Text Copyright ? 2009 by T. M. Polyanskaya, M. K. Drozdova, V. V. Volkov, and K. G. Myakishev __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 2, pp. 381–385, March–April, 2009.  相似文献   

12.
The title complexes, K[SmIII(Edta)(H2O)3] · 2H2O(I)(H4Edta = ethylenediamine-N,N,N′,N′-tetraacetic acid) and K2[SmIII(Pdta)(H2O)2]2 · 4.5H2O (II) (H4Pdta = propylenediamine-N,N,N′,N′-tetraacetic acid), were prepared and their compositions and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques, respectively. Complex I has a mononuclear structure, and the Sm3+ ion is nine-coordinated by an Edta ligand and three water molecules, yielding a pseudo-monocapped square antiprismatic conformation, and the complex crystallizes in the orthorhombic crystal system with space group Fdd2. The crystal data are as follows: a = 19.84(5), b = 35.58(9), c = 12.15(3) ?, V = 8580(38) ?3, Z = 16, ρ c = 1.925 g/cm3, μ = 3.010 mm−1, F(000) = 4976, R = 0.0252, and wR = 0.0560 for 3510 observed reflections with I ≥ 2σ(I). Complex II has a binuclear structure and the Sm3+ ion is ten-coordinated by a Pdta ligand, two oxygen atoms from a carboxylic group of adjacent Pdta ligand and two water molecules, yielding a distorted bicapped square antiprismatic prism. The complex crystallizes in the triclinic crystal system with space group P $ \bar 1 $ \bar 1 . The crystal data are as follows: a = 8.9523(15), b = 10.7106(15), c = 11.6900(19) ?, α = 80.613(5)°, β = 80.397(5)°, γ = 76.530(4)°, V = 1065.7(3) ?3, Z = 1, ρc = 1.970 g/cm3, μ = 2.532 mm−1, F(000) = 1620, R = 0.0332 and wR = 0.0924 for 5390 observed reflections with I ≥ 2σ(I).  相似文献   

13.
The (NH4)3[YbIII(ttha)]·5H2O (I) (H6ttha = triethylenetetramine-N,N,N′,N″,N‴,N‴-hexaacetic acid) and (NH4)[YbIII(pdta)(H2O)2]·5H2O (II) (H4pdta = propylenediamine-N,N,N′,N′-tetraacetic acid) complexes are synthesized by heat-refluxing and acidity-adjusting methods, and their structures are determined by single crystal X-ray diffraction techniques. These two complexes are all mononuclear structures. The complex I crystallizes in ttha monoclinic crystal system with the P21/c space group. The central YbIII ion is nine-coordinated only by one the ligand, and one non-coordinate carboxyl group is left. The crystal data are as follows: a = 10.321(4) ?, b = 12.744(5) ?, c = 23.203(9) ?, β = 91.082(6)°, V = 3051(2) ?3, Z = 4, D c = 1.754 g/cm3, μ = 3.150 mm−1, F(000) = 1636, R = 0.0357, and wR = 0.0672 for 6203 observed reflections with I ≥ 2σ(I). The YbN4O5 part in the [YbIII(ttha)]3− complex anion forms a pseudo-monocapped square antiprismatic polyhedron. The complex II is coordinated with one pdta ligand and two water molecules, which form an eight-coordinate structure, and crystallizes in the triclinic crystal system with the P[`1]P\bar 1 space group. The YbN2O6 part in the [YbIII(pdta)(H2O)2] complex anion makes a pseudo-square antiprismatic polyhedron. The crystal data are as follows: a = 9.8923(9)?, b = 10.9627(10) ?, c = 12.2618(11) ?, α = 67.284(5)°, β = 70.956(6)°, γ = 68.741(5)°, V = 1115.97(18) ?3, Z = 2, D c = 1.843 g/cm3, μ = 4.264 mm−1, F(000) = 618, R = 0.0177, and wR = 0.0409 for 4036 observed reflections with I ≥ 2σ(I).  相似文献   

14.
Syntheses and structure determination of the YIII complexes with ethylenediaminetetraacetic acid (H4edta) and trans-1,2-cyclohexanediaminetetraacetic acid (H4cydta) are reported. The crystal and molecular structures of the complexes, as well as their molecular formulas and compositions, were determined by single-crystal X-ray structure analyses, NMR, IR, thermogravimetric measurements, and elementary analyses. The crystal of the Na[YIII(edta)(H2O)3]·5H2O complex belongs to the orthorhombic crystal system and space group Fdd2. The crystal data are as follows: a = 19.355(5) Å, b = 35.431(11) Å, c = 12.122(3) Å, V = 8313(4) Å3, Z = 16, M = 544.23, Dc = 1.739 g·cm−3, μ = 2.908 mm−1 and F(000) = 4480. The final R and Rw are 0.0483 and 0.1172 for 3284 (I > 2σ(I)) unique reflections, R and Rw are 0.0678 and 0.1440 for all 8499 reflections, respectively. The YIIIN2O7 part in the [YIII(edta)(H2O)3] complex anion has a pseudo-monocapped square antiprismatic nine-coordinate structure, in which the six coordinated atoms (two N and four O) from the edta ligand and three water molecules are coordinated to the central YIII ion directly. The crystal of the Na[YIII(cydta)(H2O)2]·5H2O complex belongs to the triclinic crystal system and space group. The crystal data are as follows: a = 8.405(2) Å, b = 9.970(2) Å, c = 14.763(4) Å, α = 88.538(4)°, β = 76.193(4)°, γ = 88.100(4)°, V = 1200.6(5) Å 3, Z = 2, M = 580.31, Dc = 1.605 g·cm−3, μ = 2.519 mm−1 and F(000) = 600. The final R and Rw are 0.0381 and 0.0911 for 4198 (I > 2σ(I)) unique reflections, R and Rw are 0.0530 and 0.1041 for all 6186 reflections, respectively. The YIIIN2O6 part in the [YIII(cydta)(H2O)2] complex anion has a pseudo square antiprismatic eight-coordinate structure in which the six coordinated atoms (two N and four O) from the cydta ligand and two water molecules are coordinated to the central YIII ion directly. Original Russian Text Copyright ? 2005 by J. Wang, Y. Wang, Zh. H. Zhang, X. D. Zhang, J. Tong, X. Zh. Liu, X. Y. Liu, Y. Zhang, and Zh. J. Pan __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 5, pp. 928–938, September–October, 2005.  相似文献   

15.
The stereodynamics of the O + HCl → ClO + H reaction are investigated by quasi-classical trajectory (QCT) method. The calculations are carried out on the ground 1 1 A′ potential energy surface (PES). The orientation and alignments of the product rotational angular momentum for the title reaction are reported. The influence of collision energy on the product vector properties is also studied in the present work. Four (2π/σ)(dσ00/dω t ), (2π/σ)(dσ20/dω t ), (2π/σ)(dσ22+/dω t ), and (2π / σ)(dσ21−/dω t ), and have been calculated in the center of mass frame.  相似文献   

16.
The first vertical ionization potentials (I) of phosphorus compounds P(Xi)3, OP(Xi)3, SP(Xi)3, (4-XC6H4)3P, and PCX are related to the inductive, resonance, and polarizability parameters of inorganic, organic, and organometallic substituents X by dependences of the type I = I H + aI + bR + + c, where I H is the I value for X = H. The I values are also affected by hyperconjugation. The ratio of the contributions of the resonance (bR +) and polarizability (c) effects to the I value is determined by the degree of delocalization of the unpaired electron and the positive charge in the radical cations formed upon ionization of neutral molecules. The R + resonance parameters of organosilicon, organogermanium, and organotin substituents bound to the P ·+ radical cation center were calculated for the first time.  相似文献   

17.
The NH4[EuIII(Cydta)(H2O)2]·4.5H2O (I) (H4Cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid) and K2[Eu2III(pdta)2(H2O)2]·6H2O (II) (H4pdta = propylenediamine-N,N,N′,N′-tetraacetic acid) complexes are prepared by heat-refluxing and acidity-adjusting methods respectively, and their composition and structures are determined by elemental analyses and single crystal X-ray diffraction techniques. The complex I has a mononuclear structure, crystallizes in the triclinic crystal system with the P[`1]P\bar 1 space group; the central EuIII ion is eight-coordinated by a hexadentate Cydta ligand and two water molecules. The crystal data are as follows: a = 8.653(4) ?, b = 10.041(4) ?, c = 14.405(6) ?, α = 88.469(6)°, β = 74.892(6)°, γ = 88.256(7)°, V = 1207.5(9) ?3, Z = 1, D c = 1.731 g/cm3, μ = 2.669 mm−1, F(000) = 638, R = 0.0257, and wR = 0.0667 for 3807 observed reflections with I ≥ 2σ(I). The EuN2O6 part in the [EuIII(Cydta)(H2O)2] complex anion forms a pseudo-square antiprismatic polyhedron. The complex II is eight-coordinate as well; it is a binuclear structure that crystallizes in the monoclinic crystal system with the C 2/c space group; half of the central EuIII ion is coordinated by two nitrogen atoms from one hexadentate pdta ligand and six oxygen atoms from the same pdta ligand, one water molecule and carboxylic group from the neighboring pdta ligand respectively. The crystal data are as follows: a = 19.866(3) ?, b = 9.1017(12) ?, c = 21.010(3) ?, β = 104.972(2)°, V = 3670.1(9) ?3, Z = 8, D c = 2.046 g/cm3, μ = 3.710 mm−1, F(000) = 2240, R = 0.0213 and wR = 0.0460 for 4183 observed reflections with I ≥ 2σ(I). Otherwise, the two EuN2O6 parts in the [Eu2III(pdta)2(H2O)2]2− complex anion form a pseudo-square antiprismatic polyhedron.  相似文献   

18.
Mixed-ligand complex compounds [Pb(Phen)(i-Bu2PS2)]2 (I) and [Pb(2,2′-Bipy)(i-Bu2PS2)]2 (II) were synthesized. Their structures were determined from X-ray diffraction data (X8 APEX diffractometer, MoK α radiation, 6392 Fhkl , R = 0.0233 for I and 3937 F hkl , R = 0.0252 for II). Crystals I are triclinic: a = 10.2662(3) Å, b = 12.3037(2) Å, c = 14.8444(4) Å; α = 92.054(1)°, β = 103.473(1)°, γ = 105.561(1)°, V = 1746.89(8) Å3, Z = 2, ρcalc = 1.532 g/cm3, space group P . Crystals II are monoclinic: a = 9.3462(3) Å, b = 26.3310(12) Å, c = 28.5345(13) Å; β = 96.436(1)°, V = 6977.9(5) Å3, Z = 8, ρcalc = 1.489 g/cm3, space group P21/n. The structures are built from mononuclear molecules. In both structures, the intermolecular contacts between the Pb and S atoms of the neighboring mononuclear molecules form supramolecular assemblies involving two molecules. The environment of the Pb atoms in the assemblies is a pentagonal bipyramid, N2S4+1. The assemblies are joined into ribbons by π-π interactions of the Phen rings in I and C…C short contacts between the pyridine rings in II. Original Russian Text Copyright ? 2008 by R. F. Klevtsova, E. A. Sankova, T. E. Kokina, L. A. Glinskaya, and S. V. Larionov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 1, pp. 123–131, January–February, 2008.  相似文献   

19.
In this work, the title complexes, NH4[ErIII(Cydta)(H2O)2] · 4.5H2O (I) (H4Cydta = trans-1,2-cyclo-hexanediamine-N,N,N′,N′-tetraacetic acid) and (NH4)2[Er2III(Pdta)2(H2O)2] · 2H2O (II) (H4Pdta= propylene-diamine-N,N,N′,N′-tetraacetic acid), were prepared, respectively, and their composition and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques. Complex I selects a mononu-clear structure with pseudosquare antiprismatic geometry crystallized in the triclinic crystal system with space group $ P\bar 1 $ P\bar 1 and the central Er3+ ion is eight-coordinated by the hexadentate Cydta ligand and two water molecules. The crystal data are as follows: a = 8.568(3), b = 10.024(3), c = 14.377(4) ?, α = 88.404(4)°, β = 75.411(4)°, γ = 88.332(4)°, V = 1194.2(6) ?3, Z = 1, ρ c = 1.793 g/cm3, μ = 3.586 mm−1, F(000) = 648, R = 0.0257, and wR = 0.0667 for 4169 observed reflections with I ≥ 2σ(I). Complex II is eight-coordinated as well, which selects a binuclear structure with two pseudosquare antiprismatic geometry and crystallizes in the monoclinic crystal system with space group P21/n. The central Er3+ ion is coordinated by two nitrogens and four oxygens from one hexadentate Pdta ligand. Besides, two oxygens come from one carboxylic group of the neighboring Pdta ligand and one water molecule, respectively. The crystal data are as follows: a = 12.7576(8), b = 9.3151(6), c = 14.3278(9) ?, β = 96.1380(10)°, V = 1692.93(19) ?3, Z = 4, ρ c = 2.054 g/cm3, μ = 5.015 mm−1, F(000) = 1028, R= 0.0228, and wR = 0.0534 for 2984 observed reflections with I ≥ 2σ(I).  相似文献   

20.

Abstract  

Chiral α-ethylphenylamine tartaric acid salts were synthesized from α-ethylphenylamine by direct reaction with chiral tartaric acid. The crystal structure of S-(−)-α-ethylphenylamine-(2R,3R)-(−)-dihydroxybutanedioic acid was determined. The crystal is monoclinic, of space group P21/n , with a = 6.331(5) ?, b = 14.209(11) ?, c = 7.495(6) ?, α = 90.00o, β = 107.000(13)o, γ = 90.00o, λ = 0.7103 Ǻ, V = 644.7(9), Z = 2, D c = 1.397 g/cm3, M r  = 271.27 and F(000) = 288, R = 0.0477, and ωR = 0.0838 for 1388 observed reflections with I > 2σ(I). We then used the chiral α-ethylphenylamine tartaric acid salts as catalysts in the cyanosilylation of prochiral ketones, and moderate conversions were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号