首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Polycrystalline zirconium tin titanate (Zr0.8Sn0.2TiO4, ZST) thin films with thickness of 81 nm were deposited successfully along the (1 0 0) on a p-type Si substrate by an improved sol-gel method. The deposited films were crystallized when annealing temperature was up to 450 °C. The thickness and compositions of the interface layer between the ZST films and Si substrate were identified by high-resolution transmission electron microscope (HRTEM). The electrical properties such as leakage current density, flat-band voltage and capacitance of the films were measured and discussed. Furthermore, the mechanism of the leakage current was also investigated.  相似文献   

2.
Melilite type ceramics ABC3O7 such as La1.54Sr0.46Ga3O7.27 are a new class of oxide conductors where the conductivity is carried out through interstitial oxygen ions. This work presents the attempt to replace the A-site element La with the other lanthanide elements and Y, resulting in various Ln1 + xSr1 − xGa3O7 + x/2 ceramics, in which Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Y, and 0.1 < x < 0.54. X-ray diffraction analysis shows that the melilite structure could be formed when the replacement is conducted with most lanthanides but not Yb and Y. Impedance spectroscopy demonstrates that the conductivity decreases dramatically with the decreasing of Ln3+ size and the charge-carrier concentration. These results suggest that, as an interstitial oxide ion electrolyte, La1.54Sr0.46Ga3O7.27 is the most promising ceramic in the Ln1 + xSr1 − xGa3O7+x/2 melilite family since La3+ has the largest ionic radius of the lanthanide elements.  相似文献   

3.
Electrical and electrochemical properties of the 70Li2S·(30 − x)P2S5·xP2S3 and the 70Li2S·(30 − x)P2S5·xP2O5 (mol%) glass-ceramics prepared by the mechanical milling technique were investigated. Glass-ceramics with 1 mol% P2S3 and 3 mol% P2O5 showed the highest conductivity of 5.4 × 10− 3 S cm− 1 and 4.6 × 10− 3 S cm− 1, respectively. Moreover, these glass-ceramics showed higher electrochemical stability than the 70Li2S·30P2S5 (mol%) glass-ceramic. From the XRD patterns of the obtained glass-ceramics, trivalent phosphorus and oxygen were incorporated into the Li7P3S11 crystal. We therefore presume that the Li7P3S11 analogous crystals, which were formed by incorporating trivalent phosphorus and oxygen into the Li7P3S11 crystal, improve the electrical and electrochemical properties of the glass-ceramics. An all-solid-state cell using the 70Li2S·29P2S5·1P2S3 (mol%) glass-ceramic as solid electrolyte operated under the high current density of 12.7 mA cm− 2 at the high temperature of 100 °C. The cell showed an excellent cyclability of over 700 cycles without capacity loss.  相似文献   

4.
A Monte Carlo molecular simulation study is presented on the adsorption and growth of C60 films on the surface of the (1 1 0) face of rutile. Simulations are performed for a temperature of 600 K using atomistic models both for the fullerene molecules and the TiO2 surface. It is found in this work that C60 is adsorbed preferably in an ordered arrangement along the surface depressions over the exposed undercoordinated Ti cations. At low densities adsorption occurs preferably at alternate rows, with locations in consecutive rows being occupied appreciably only at higher C60 densities. At low densities, the fullerene molecules tend to aggregate into islands in the surface plane. Additional layers of C60 form only as the density increases, and do so before a monolayer is completed in all consecutive rows. Full monolayer capacity obtained at the highest densities is about 0.9 C60 molecules per nm2, but this is only achieved by completing the packing of molecules in interstices at a slightly upper level. The fraction of the molecules that lie closest to the surface only amounts to 0.6 molecules per nm2.  相似文献   

5.
Li1 + x(Ni0.5Mn0.5)1  xO2 cathode material for Li-ion batteries has been prepared by a molten salt method using Li2CO3 salt. The influences of synthetic temperature and time have been intensively investigated. It is easy to obtain materials with a hexagonal α-NaFeO2 structure except broad peaks between 20° and 25°. Nickel in Li1 + x(Ni0.5Mn0.5)1  xO2 is oxidized to a trivalent state while manganese maintained a tetravalent state. It is found that the discharge capacities of all samples increase with cycling. The sample prepared at 850 °C for 5 h has a discharge capacity of 130 mAh g− 1 between 2.5 and 4.5 V versus VLi+/Li at a specific current of 0.13 mA cm− 2 after 50 cycles at 25 °C.  相似文献   

6.
LiMn2O4 thin films were prepared by a sol–gel method using spin-coating and annealing processes. Anhydrous Mn(CH3COCHCOCH3)3 (manganese acetylacetonate) and LiCH3COCHCO–CH3 (lithium acetylacetonate) were chosen as source materials. The film electrochemical properties depended on the drying temperature even when subjected to the same annealing conditions. The discharge capacity of annealed film increased as the drying temperature was increased. However, the rate of capacity fading during cycling increased as the drying temperature was increased.  相似文献   

7.
A para-sexiphenyl monolayer of near up-right standing molecules (nominal thickness of 30 Å) is investigated in-situ by X-ray diffraction using synchrotron radiation and ex-situ by atomic force microscopy. A terrace like morphology is observed, the step height between the terraces is approximately one molecular length. The monolayer terraces, larger than 20 μm in size, are extended along the [0 0 1] direction of the TiO2(1 1 0) substrate i.e. along the Ti-O rows of the reconstructed substrate surface. The structure of the monolayer and its epitaxial relationship to the substrate is determined by grazing incidence X-ray diffraction. Extremely sharp diffraction peaks reveal high crystalline order within the monolayer, which was found to have the bulk structure of sexiphenyl. The monolayer terraces are epitaxially oriented with the (0 0 1) plane parallel to the substrate surface (out-of-plane order). Four epitaxial relationships are observed. This in-plane alignment is determined by the arrangement of the terminal phenyl rings of the sexiphenyl molecules parallel to the oxygen rows of the substrate.  相似文献   

8.
Series Pr0.5Sr0.5MnO3 (PSMO) films of thickness ranging from 20 to 400 nm were epitaxially grown on (0 0 1)-oriented LaAlO3 using pulsed laser deposition method. The biaxial compressive strain effect on phase transition of the films was systematically investigated by both electrical and magnetic measurements. The 60 nm film shows a ferromagnetic metal to antiferromagnetic insulator (FMM-AFI) transition at a temperature of ∼190 K. Such a FMM-AFI transition is depressed as the films become thicker, and finally disappears in the strain-relaxed situation. On the other hand, the Curie temperature is remarkably enhanced (∼50 °C) when the film thickness increases from 60 to 400 nm. These results may yield the possibility to modulate the phase transitions by varying the structural strain.  相似文献   

9.
The solid-state synthesis of magnetically soft phase FePd3 in epitaxial Pd(0 0 1)/Fe(0 0 1)/MgO(0 0 1) film systems was studied experimentally. The system had a Fe to Pd ratio of 1:3. An increase to 450 °C leads to the formation of three variants of ordered L10-FePd crystallites. At 500 °C, the solid-state reaction of unreacted Pd with L10-FePd crystallites initiates the growth of an ordered epitaxial L12-FePd3(0 0 1) layer. When annealing at 650 °С, a gradual disordering is observed. The magnetic anisotropy (K1=−2.0×103 erg/cm3) and the saturation magnetization (MS=650 emu/cm3) of the disordered FePd3 phase were determined.  相似文献   

10.
A series of Ti1−xMoxO2−yNy samples were prepared by using sol-gel method and characterized by X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. All Ti1−xMoxO2−yNy samples are anatase phase. It is found that Mo, N mono-doping can increase visible light absorption, while (Mo + N) co-doping can greatly enhance absorption in whole visible region. Results of our first-principles band structure calculations reveal that (Mo + N)-doping, especially passivated co-doping can increase the up-limit of dopant concentration and create more impurity bands in the band gap of TiO2, which leads to a greatly increase of its visible-light absorption without a decrease of its redox potential. It reveals that (Mo + N) co-doped TiO2 is promising for a photocatalyst with high photocalystic activity under visible light.  相似文献   

11.
TiO2 and TiNxOy thin films grown by low pressure metal-organic chemical vapor deposition (LP-MOCVD) on top of Si(0 0 1) substrate were characterized by X-ray multiple diffraction. X-ray reflectivity analysis of TiO2[1 1 0] and TiNO[1 0 0] polycrystalline layers allowed to determine the growth rate (−80 Å/min) of TiO2 and (−40 Å/min) of TiNO films. X-ray multiple diffraction through the Renninger scans, i.e., ?-scans for (0 0 2)Si substrate primary reflection is used as a non-conventional method to obtain the substrate lattice parameter distortion due to the thin film conventional deposition, from where the information on film strain type is obtained.  相似文献   

12.
Li1+xGe2-xAlxP3O12系统的相关系和电导   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究了Li1+xGe2-xAlxP3O12系统的相组成和电导的关系。发现用LiGe2P3O12作为基体化合物,通过离子置换可以得到好的锂离子导体。用Al3+置换LiGe2P3O12中的Ge4+,在0关键词:  相似文献   

13.
Cr doped TiO2-SiO2 nanostructure thin film on glass substrates was prepared by a sol-gel dip coating process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the structural and chemical properties of the films. A UV-vis spectrophotometer was used to measure the transmittance spectra of the thin film. The hydrophilicity of the thin film during irradiation and storage in a dark place was measured by a contact angle analyzer. The results indicated that Cr doping has a significant effect on the transmittance and super-hydrophilicity of TiO2-SiO2 thin film.  相似文献   

14.
Ba(Zr0.20Ti0.80)O3 (BZT) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si, MgO and ZrO2 buffered Pt(1 1 1)/Ti/SiO2/Si substrates by a sol-gel process. The BZT thin films directly grown on Pt(1 1 1)/Ti/SiO2/Si substrates exhibit highly (1 1 1) preferred orientation, while the films deposited on Pt(1 1 1)/Ti/SiO2/Si substrates with MgO and ZrO2 buffer layers show highly (1 1 0) preferred orientation. At 100 kHz, dielectric constants are 417, 311 and 321 for the BZT thin films grown on Pt(1 1 1)/Ti/SiO2/Si, MgO and ZrO2 buffered Pt(1 1 1)/Ti/SiO2/Si substrates, respectively. The difference in dielectric properties of three BZT films can be attributed to the series capacitance effect, interface conditions and their orientations.  相似文献   

15.
Diffusive motion of an Li+ion in the solid solution Li4?x(PO4)x(SiO4)1?x (0 ≦ x ≦ 0.35) was studied by 7Li pulsed nmr between ? 70 and 440°C. Activation energies for an Li+ ion diffusion decreased monotonically with increasing x in the composition. These values are smaller than those reported from the measurement of ionic conductivity. Discrepency seems to result from the local nature of an Li+ diffusion observed by nmr contrary to the long-range one in the ionic conduction.  相似文献   

16.
We have investigated a BC3 covered NbB2(0 0 0 1) surface using scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and low energy electron diffraction (LEED). The STM images reveal characteristic features of a Moiré pattern reflecting an incommensurate relation of the BC3 sheet with the substrate: bright protrusions with the periodicity of the substrate lattice are modulated in intensity with the periodicity of the BC3 lattice. As a result, the surface exhibits nm-scale patchy regions with either the √3 × √3 or the 1 × 1 structure of the substrate. The two-dimensional Fourier transformation pattern of the STM image is consistent with the LEED pattern proving the epitaxial and incommensurate relationship between BC3 surface sheet and substrate. No feature of a predicted superconducting gap was found in STS spectra measured at 5 K.  相似文献   

17.
In this work, the synthesis of molecular materials formed from A2[TiO(C2O4)2] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Egd. The cubic NLO effects were substantially enhanced for materials synthesized from K2[TiO(C2O4)2], where χ(3) (−3ω; ω, ω, ω) values in the promising range of 10−12 esu have been evaluated.  相似文献   

18.
Ni3–xCr2x/3(PO4)2 (x=0 and 0.02) microcrystalline powders were obtained as single phases via a modified sol–gel Pechini-type in situ polymerizable complex method. The samples were characterized using scanning electron microscopy, X-ray diffraction, cathodoluminescence (CL), and thermoluminescence (TL) techniques. We found that Cr3+ doping modified the average particle and distribution. The mean particle size was 0.441 μm for Ni3(PO4)2 and 0.267 μm for Ni2.98Cr0.013(PO4)2. The results also reveal that Cr3+ doping notably enhanced the CL and TL UV-blue emission.  相似文献   

19.
Nanostructured bismuth ferrite (BiFeO3) thin films were deposited on glass substrate by the sol-gel process. The as-fired film at 250 °C was found to be amorphous crystallizing to pure rhombohedral phase after annealing at 450 °C for 2 h in air. The XRD pattern shows that the sample is polycrystalline in nature. The average grain size of the film calculated from the XRD data was found to be 16 nm. The as-fired film show high transmittance that decreases after crystallization. The absorption edge of the films was found to be sharper and shifting towards the lower energy as the annealing temperature increases. The optical energy band gaps of the amorphous and crystalline films were found to be 2.63 and 2.31 eV, respectively. The refractive indices of the amorphous and crystalline films were 2.05 and 2.26, respectively.  相似文献   

20.
Nanocrystalline Co2xNi0.5−xZn0.5−xFe2O4 (x=0−0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号