首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two examples were selected to emphasize the potential of grain boundary engineering in the performance design of heterogeneous ceramics. Gadolinium-doped ceria-based powders were co-fired with additions of silica, and silica and lanthanum oxide, to test the silica scavenging role of lanthanum. The formation of one ionic conducting secondary phase, instead of an insulating phase, was attempted. The structural, microstructural, and electrical characterization of these samples confirmed the formation of one apatite-type lanthanum silicate-based phase and a significant enhancement of the grain boundary conductivity of these materials. One second approach addressed the formation of one mixed conductor, with electronically conductive grain boundaries, surrounding the grains of one lanthanum gallate-based electrolyte (core-shell type microstructure). Fe-doped grain boundaries were formed by selective Fe-diffusion (thermally assisted) from lanthanum ferrite screen printed layers. Combined microstructural and electrical characterization showed that the adopted solution was also effective.  相似文献   

2.
The effect of sample inhomogeneity on the ferromagnetic resonance linewidth is determined by diagonalization of a spin wave Hamiltonian for ferromagnetic thin films with inhomogeneities spanning a wide range of characteristic length scales. A model inhomogeneity is used that consists of size D grains and an anisotropy field H(p) that varies randomly from grain to grain in a film with thickness d and magnetization M(s). The resulting linewidth agrees well with the two-magnon model for small inhomogeneity, H(p)DpiM(s)d, the precession becomes localized and the spectrum approaches that of local precession on independent grains.  相似文献   

3.
In this study, the microstructural variation and nano-indention of Al-5.7Zn-2.4Mg-1.5Cu (AZMC) thin film was investigated using DC electrical current at a density of 1000 A/cm2. The results show that microstructural changes due to the electrical current involved both the solid solubility effect and enhanced diffusion. The electrical current drove the Al atoms and Cu atoms of the matrix from the cathode to the anode. After electrical current testing, precipitation phases (Al2Cu; CuMgAl2) had decomposed into the cathode matrix and MgZn phases had grown in the anode zones. Meanwhile, the current also caused the hardness of the thin film to decrease and affected both the texture and dynamic strain mechanism of nano-indention.  相似文献   

4.
Three Bi2Sr2Co2Oy thin films with different microstructures have been prepared by chemical solution deposition on LaAlO 3(001) through varying the annealing temperature.With the decrease in the annealing temperature,both the size and c-axis alignment degree of grains in the film decrease as well,leading to an increase in the film resistivity.In addition,the decrease in the annealing temperature also results in a slight increase in the Seebeck coefficient due to the enhanced energy filtering effect of the small-grain film.The nanostructured Bi2Sr2Co2Oy film with an average grain size of about 100 nm shows a power factor comparable to that of films with larger grains.Since the thermal conductivity of the nanostructured films can be depressed due to the enhanced phonon scattering by grain boundary,a higher figure of merit is expected in Bi2Sr2Co2Oy thin film with grains in nanometer size.  相似文献   

5.
A simulation methodology for the synthesis of polycrystalline, ionic thin films is developed. The method involves the preparation of a polycrystalline substrate onto which a thin film is subsequently grown by crystallization from the melt. A detailed structural analysis of a textured sixteen-grain FeO film, with a grain size of approximately 4.7 nm, shows that the interiors of the grains are almost perfect single crystals with only a very few vacancies and no interstitials. The grains are delineated by 001 tilt grain boundaries; as expected, the low-angle grain boundaries in the film consist of arrays of dislocations, while the high-angle grain boundaries are relatively narrow and well ordered.  相似文献   

6.
Co thin films prepared by an electroless deposition technique were analyzed by X-ray energy dispersive spectroscopy in the transmission electron microscope. The overall composition of the deposited film was determined to be approximately Co-4.1 wt%P (Co-7.5 at%P). The spectra taken from the center of the individual grains did not show any evidence of phosphorous. However, when the electron beam was located at the triple point of grain boundaries, a phosphorous peak was detected. Thus, this establishes that the grains are essentially pure Co and that the phosphorous is significantly segregated to the grain boundaries. This may be the cause of the magnetic isolation of the grains.  相似文献   

7.
The gadolinia-doped ceria (GDC) thin films were deposited by pulsed laser deposition. Samples with special geometry were prepared which allowed us to characterize GDC film in across-plane direction. The electrical properties of the films were investigated by means of impedance spectroscopy in the frequency range of 10 Hz to 10 GHz and 380–600 K temperature interval. The data analysis was performed by using appropriate equivalent circuit. The equivalent circuit modeled thin GDC film itself, platinum metal connections (traces) in the dielectric medium of sapphire substrate and interfaces between the film and platinum electrodes. Hence, several factors influenced the impedance spectra, namely the properties of substrate, the oxygen-ion transport in the film, ion blocking at the interface between the film and the electrode, and metal traces. The electrical properties of GDC thin films were compared with these of bulk ceramics and showed similar conductivity and dielectric permittivity values. The study also revealed that measurement data at electrical field frequencies of up to 10 GHz were particularly important to correctly estimate electrical properties of GDC thin films, because at high temperatures the electric response of GDC film shifts to high frequencies (higher than 1 MHz at 600 K). The thin film sample preparation for high frequency measurements and fitting of impedance data by using relatively simple equivalent circuit model is presented.  相似文献   

8.
An interfacial reaction between Ni-SDC anodes and the LSGM electrolyte was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to clarify its effect on the SOFC performance. Highly resistive fine particles were formed in the vicinity of the Ni-SDC/LSGM interface as a result of the reaction between Ni and LSGM. TEM/EDX analyses revealed that these particles were MgO, which has a much lower electronic conductivity than Ni. The particles were localized on the surface of the Ni grains in the Ni-SDC anodes. The effect of MgO particle formation on the SOFC performance depended on the anode thickness. The particles significantly increased the area-specific ohmic resistance of thin anodes (less than 15 μm), but they hardly increased the resistance of thick anodes at all.  相似文献   

9.
缓冲层Ta对FePt薄膜L10有序相转变及矫顽力的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
制备了Ta/FePt/C系列多层膜,研究了样品在不同温度退火后的磁特性和微结构.实验结果表明,不同厚度的Ta缓冲层具有不同的微结构特征,显著影响FePt层的L10有序相的形成及相应的矫顽力.当Ta缓冲层较薄,Ta层为非晶态,且较为粗糙,由此使FePt在界面处产生较多的缺陷并导致较高密度的晶界,在退火过程中,受束缚相对较弱的非晶态的Ta原子比较容易沿FePt的缺陷和晶界处向FePt层扩散,使FePt在相变过程中产生的应力比较容易释放,同时,Ta在扩散过程中产生的缺陷,降低了FePt有序 关键词: FePt薄膜 0相')" href="#">L10相 原子扩散  相似文献   

10.
Investigations were realized on the microstructural and morphological evolution of RF-sputtered vanadium pentoxide thin films during growth. V2O5 thin films at different stages of growth were studied by spectroscopic ellipsometry, X-ray diffraction, atomic force microscopy and scanning electron microscopy. Film grain orientation, roughness and density were found to have notable evolution during growth. Electrochemical tests in liquid and solid electrolyte state configuration showed non-linear relationship between discharge capacity and V2O5 film thickness (<1 μm), which could be attributed in parts to the observed morphological and microstructural changes during growth, mainly the existence of a gradient density through film thickness and the pronounced top surface roughness.  相似文献   

11.
采用反应磁控溅射方法,在(0001)蓝宝石单晶衬底上,制备了纳米多晶Gd2O3掺杂CeO2(GDC)氧离子导体电解质薄膜,采用X射线衍射仪(XRD)、原子力显微镜(AFM)对薄膜物相、结构、粗糙度、表面形貌等生长特性进行了表征,利用交流阻抗谱仪测试了GDC薄膜不同温度下的电学性能;实验结果表明,GDC薄膜为面心立方结构,在所研究的衬底温度范围内,均呈强(111)织构生长;薄膜表面形貌随衬底温度发生阶段性变化:衬底温度由室温升高到300℃时, 关键词: 2O3掺杂CeO2电解质薄膜')" href="#">Gd2O3掺杂CeO2电解质薄膜 反应磁控溅射 生长特性 电学性能  相似文献   

12.
280 nm-thick Ni films were deposited on SiO2/Si(1 0 0) and MgO(0 0 1) substrates at 300 K, 513 K and 663 K by a direct current magnetron sputtering system with the oblique target. The films deposited at 300 K mainly have a [1 1 0] crystalline orientation in the film growth direction. The [1 1 0]-orientation weakens and the [1 1 1]- and [1 0 0]-orientations enhance with increasing deposition temperature. The lattice constant of the Ni films is smaller than that of the Ni bulk, except for the film grown on MgO(0 0 1) at 663 K. Furthermore, as the deposition temperature increases, the lattice constant of the films grown on the SiO2/Si(1 0 0) decreases whereas that of the films grown on the MgO(0 0 1) increases. The films deposited at 300 K and 513 K grow with columnar grains perpendicular to the substrate. For the films deposited at 663 K, however, the columnar grain structure is destroyed, i.e., an about 50 nm-thick layer consisting of granular grains is formed at the interface between the film and the substrate and then large grains grow on the layer. The Ni films deposited at 300 K consist of thin columnar grains and have many voids at the grain boundaries. The grains become thick and the voids decrease with increasing deposition temperature. The resistivity of the film decreases and the saturation magnetization increases with increasing deposition temperature.  相似文献   

13.
为了更深入地研究正负极活性材料精细结构与MH-Ni电池性能之间的关系,本文在介绍了简单而较适用的处理X射线衍射数据的方法之后,系统综述了电池活化前后、循环过程中正负极活性物质结构和微结构与电池性能之间关系研究的一些进展。主要包括:(1)具有适当晶粒大小和较大层错几率的β-Ni(OH)2物质,能获得较大的充放电容量;(2)没有观测到MH/Ni电池在充放电过程中有β-Ni(OH)2β-NiOOH的相变,只有满充和过充电时才发生部份β-Ni(OH)2γ-NiOOH的相变;MH/Ni电池的物理导电机制是在正负极活性物质中嵌入和脱嵌的氢离子形成固相质子在电极间定向运动。(3)循环性能的衰减、内阻、容量的变化与正负极活性物质的微结构变化有良好对应关系。微结构变化消耗电解液,并改变电解液的性能。正极、负极和电解液三者的共同作用是循环性能衰减的主导原因。(4)正极添加剂与电池性能之间的关系。由于正极添加剂Lu2O3和CaF2能抑制正极活性物质的微晶细化、减缓总的层错几率降低,对于储氢合金能抑制晶粒增大,特别能抑制A(OH)3和B的析出,故能提高了电池的循环性能和寿命。(5)电池储存前后的容量衰减和内阻增加是其在储存过程中CoOOH析出和晶粒细化双重作用的结果。  相似文献   

14.
Polycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi多晶硅 受激准分子激光器结晶 结晶化 界面晶粒生长polycrystalline silicon, excimer laser crystallization,Ni-disilicide, Ni-metal-induced lateral crystallization, two-interface grain growthProject supported by the National High Technology Development Program of China (Grant No 2002AA303250) and by the National Natural Science Foundation of China (Grant No 60576056).9/7/2005 12:00:00 AM3/6/2006 12:00:00 AMPolycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi2) assisted excimer laser crystallization (ELC). The process to prepare a sample includes two steps. One step consists of the formation of NiSi2 precipitates by heat-treating the dehydrogenated amorphous silicon (a-Si) coated with a thin layer of Ni. And the other step consists of the formation of poly-Si grains by means of ELC. According to the test results of scanning electron microscopy (SEM), another grain growth model named two-interface grain growth has been proposed to contrast with the conventional Ni-metal-induced lateral crystallization (Ni-MILC) model and the ELC model. That is, an additional grain growth interface other than that in conventional ELC is formed, which consists of NiSi2 precipitates and a-Si. The processes for grain growth according to various excimer laser energy densities delivered to the a-Si film have been discussed. It is discovered that grains with needle shape and most of a uniform orientation are formed which grow up with NiSi2 precipitates as seeds. The reason for the formation of such grains which are different from that of Ni-MILC without migration of Ni atoms is not clear. Our model and analysis point out a method to prepare grains with needle shape and mostly of a uniform orientation. If such grains are utilized to make thin-film transistor, its characteristics may be improved.  相似文献   

15.
This paper focuses on the effect of grain boundaries on the diffusion processes in polycrystalline C60 thin films. Electrically induced diffusion of Au was investigated by in situ measurements of the film conductivity. Electron Paramagnetic Resonance (EPR) spectroscopy was used to study diffusion of oxygen. Increase in grain sizes in polycrystalline C60 thin films was found to result in the acceleration of gold and oxygen diffusion. The results are interpreted assuming that these impurities diffuse in C60 films dominantly along grain boundaries.  相似文献   

16.
Intrinsic and doped polycrystalline silicon thin films were grown by the Ni silicide seeds induced crystallization. The Ni first reacted to Si forming a silicide seeds, then these seeds act as nuclei, from which the grains start to grow laterally. Compared with traditional Ni induced lateral crystallization, polycrystalline silicon thin film was grown by Ni silicide induced crystallization with low Ni contamination and large grain sizes. It can be found that the Ni silicide induced crystallization rate is accelerated by p-type doping and is decelerated by n-type doping. And the slightly and strongly phosphorous-doped polycrystalline silicon can be obtained with different grain shapes. Also, the sheet resistance of doped polycrystalline silicon decreases with the increasing of the doping atoms. A reasonable explanation is presented for the dopant effects on the growth rate, microstructure and electronic properties of the samples.  相似文献   

17.
We studied the growth of nanocrystalline silicon (nc-Si) thin film exhibiting a strong room temperature photoluminescence (PL) at 1.81–2.003 eV. The amorphous silicon was crystallized by Ni silicide mediated crystallization (Ni SMC) and then Secco-etched to exhibit the PL. The PL peak energy and intensity increase with increasing the metal density on the a-Si because of the reduction in the grain size down to 2 nm. The photoluminescence energy and peak intensity depend strongly on the Secco etch time because the grain size is reduced by etching the grain boundaries.  相似文献   

18.
Atomic simulations of the growth of polycrystalline Ni demonstrate that deposited atoms incorporate into the film at boundaries, resulting in compressive stress generation. Incorporated atoms can also leave the boundaries and thus relieve compressive stress. This leads to a complex interplay between growth stress, adatom incorporation, and surface structure. A simple, theoretical model that accounts for grain size effects is proposed and is in good agreement with simulation results.  相似文献   

19.
Knowledge about the crystallization and grain growth characteristics of metal oxide thin films is essential for effective microstructural engineering by thermal post-annealing and the integration to Si-based miniaturized electroceramic devices. Finite size and interface effects may cause fundamentally different behavior compared to three dimensional macroscopic systems. This work presents a comprehensive investigation of the crystallization kinetics and microstructural evolution upon thermal post-annealing of amorphous 200 nm and 1.2 μm thin films of 8 mol% yttria-stabilized zirconia grown by pulsed laser deposition (PLD) using ex- and in-situ X-ray diffraction, Raman spectroscopy, and electron microscopy techniques. The layers exhibit a remarkably low crystallization temperature of 200-250 °C while exposure to energetic electrons induces the formation of randomly dispersed ~ 20 nm sized crystallites already at ambient temperature. The isothermal amorphous to crystalline phase transformation kinetics can be described quantitatively by the Johnson-Mehl-Avrami-Kolmogorov model. They reveal characteristics of a three dimensional growth under cation bulk diffusion control with heterogeneous nucleation that changes from continuous to instantaneous initial seeding at temperatures above 300 °C. Large (> 100 nm) equiaxed grains are formed rapidly without a stabilization of transient nanocrystals during the thermally induced phase transformation. A stagnation of normal grain growth resulting in a logarithmic normal size distribution is observed once the average grain dimensions approach the film thickness. The results on the crystallization and grain growth of the PLD-grown YSZ films are evaluated with regards to the fabrication of YSZ solid electrolyte membranes for Si-supported micro solid oxide fuel cells and gas sensors.  相似文献   

20.
Porous Ni-YSZ (YSZ—yttria-stabilized zirconia) films were fabricated by reactive co-sputtering of a Ni and a Zr-Y target, followed by sequentially annealing in air at 900 °C and in vacuum at 800 °C. The Ni-YSZ films comprised small grains and pores that were tens of nanometers in size. The porous Ni-YSZ films were used as an anode on one side of a YSZ electrolyte disc and a La0.7Sr0.3MnO3 thick film was used as a cathode on the other side of the disc to form solid oxide fuel cells (SOFCs). The voltage-current curves of the SOFCs with single- and a triple-layered porous anodes were measured in a single-chamber configuration, in a mixture of CH4 and air (CH4:O2 volume ratio=2:1). The maximum power density of the SOFC using the single-layered porous Ni-YSZ thin films as the anode was 0.38 mW cm−2, which was lower than that of 0.76 mW cm−2, obtained using a screen-printed Ni-YSZ thick anode. The maximum power density of the SOFC with a thin anode was increased, but varied between 0.6 and 1.14 mW cm−2 when a triple-layered porous Ni-YSZ anode was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号