共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper will describe the application of a finite element (FE) code to design a test cell, in which a single transducer is used to generate acoustic cavitation. The FE model comprises a 2-D slice through the centre of the test cell and was used to evaluate the generated pressure fields as a function of frequency. Importantly, the pressure fields predicted by FE modelling are used to indicate the position of pressure peaks, or 'hot-spots', and nulls enabling the systems design engineer to visualise both the potential cavitation areas, corresponding to the 'hot-spots', and areas of low acoustic pressure. Through this design process, a rectangular test cell was constructed from perspex for use with a 40 kHz Tonpilz transducer. A series of experimental measurements was conducted to evaluate the cavitation threshold as a function of temperature and viscosity/surface tension, for different fluid load media. The results indicate the potential of the FE design approach and assist the design engineer in understanding the influence of the fluid load medium on the cell's ability to produce a strong cavitation field. 相似文献
2.
Abstract A special finite element method (FEM) programme has been developed, reflected all significant phenomena connected with assembly and exploration of the Belt chamber. A nonhomogeneous temperature field is taken into account. Isotropic, kinematic and mixed hardening rules can be considered. 相似文献
3.
运用有限元分析软件ANSYS建立了ITER装置重力支撑结构环向20°的三维有限元模型,采用子空间法对ITER重力支撑结构系统进行了有限元模态分析,求出了重力支撑系统的前10阶固有频率和振型,并对振型特点进行了分析。 相似文献
4.
讨论了靶场光学元件在环境热载荷作用下的变形分析理论和数学描述,采用有限元分析软件ANSYS建立了靶场反射镜的模型,用靶场实测环境温度变化作为载荷,计算得到了反射镜在靶场温度变化0.3 ℃时,垂直镜面方向的变形及其在平行于镜面平面内的转角漂移。结果表明:在当前的温控条件下,光学元件在环境热载荷作用下的变形满足稳定性设计要求。并计算了几种环境温度变化下反射镜的变形和转角漂移。初步的结果表明:环境温度变化与反射镜的转角漂移成正比。 相似文献
5.
6.
7.
8.
9.
Matthew I. Barham Daniel A. White David J. Steigmann 《Journal of computational physics》2010,229(18):6193-6207
Recently a new class of biocompatible elastic polymers loaded with small ferrous particles, a magnetoelastic polymer, has been developed. This engineered material is formed into a thin film using spin casting. An applied magnetic field will deform the film. The magnetic deformation of this film has many possible applications, particularly in microfluidic pumps and pressure regulators. In this paper a finite element method suitable for the transient simulation of arbitrarily shaped three-dimensional magnetoelastic polymers subjected to time-varying magnetic fields is developed. The approach is similar to that employed in finite elment magnetohydrodynamic simulations, the key difference is a more complex hyperelastic material model. In order to confirm the validity of the approach, finite element solutions for an axially symmetric thin film are compared to an analytical solution based on the membrane (infinitely thin) approximation. For this particular problem the two approaches give qualitatively similar results and converge as the film thickness approaches zero. 相似文献
10.
Adrian Doicu Thomas Trautmann Franz Schreier Michael Hess 《Journal of Quantitative Spectroscopy & Radiative Transfer》2005,91(3):347-361
The finite element method is applied to the solution of the two-dimensional atmospheric radiative transfer. The analysis is mainly focussed on the derivation of the cell or element equation. The Galerkin method and several hybrid methods using the integral and finite difference form of the radiative transfer equation are employed to obtain the cell equation. The assembled system of equations relating the radiances at the lower and upper boundary of the domain is solved by a direct method. 相似文献
11.
12.
Naoyuki Amemiya Kengo Miyamoto Shun-ichi Murasawa Hideki Mukai Kazuya Ohmatsu 《Physica C: Superconductivity and its Applications》1998,310(1-4):30-35
AC losses in Bi-2223 superconducting tapes carrying AC transport current and/or exposed to DC or AC magnetic field are calculated with a numerical model based on the finite element method. Superconducting property is given by the E–J characteristic represented by a power law using equivalent conductivity. First, transport loss and magnetization loss are calculated numerically and compared with measured values. The calculated losses almost agree with the measured losses. Frequency dependencies of calculated and measured transport losses are compared with each other. Next, the influence of DC external magnetic field on the transport loss is studied. DC external magnetic field reduces n that is an exponent in the power law connecting resistivity and current density. The numerically calculated transport loss increases with increasing DC magnetic field. Finally, the total loss of superconducting tape carrying AC transport current in AC magnetic field is calculated. In the perpendicular magnetic field, the calculated total loss is lager than the sum of the transport loss and the magnetization loss, while they almost agree with each other in the parallel magnetic field. 相似文献
13.
14.
In recently discovered self healing creep steels, open-volume creep cavities are filled by the precipitation of supersaturated solute. These creep cavities form on the grain boundaries oriented perpendicular to the applied stress. The presence of a free surface triggers a flux of solute from the matrix, over the grain boundaries towards the creep cavities. We studied the creep cavity filling by finite element modelling and found that the filling time critically depends on (i) the ratio of diffusivities in the grain boundary and the bulk, and (ii) on the ratio of the intercavity distance and the cavity size. For a relatively large intercavity spacing 3D transport is observed when the grain boundary and volume diffusivities are of a similar order of magnitude, while a 2D behaviour is observed when the grain boundary diffusivity is dominant. Instead when the intercavity distance is small, the transport behaviour tends to a 1D behaviour in all cases, as the amount of solute available in the grain boundary is insufficient. A phase diagram with the transition lines is constructed. 相似文献
15.
Laser ablation constitutes the basis of a number of techniques aiming at the processing and diagnosis of polymeric coatings on a variety of substrates. In all these applications, however, the issue is raised about the mechanical effects of the procedure on the substrate integrity. To this end, we employ finite element modeling for simulating the mechanical effects of UV laser ablation on a polymer specimen, with particular emphasis on the structural modifications that may be induced at areas away from the ablation spot. The cylindrical specimen consists of a poly(methylmethacrylate) (PMMA) film on a silica substrate. The analysis shows that stresses of high enough amplitude may propagate to distances far away from the irradiated spot and may induce deleterious mechanical deformations (e.g., cracks or delaminations). The dependence of the distribution of the tensile stresses on the thickness of the two components, as well as on size of the ablation spot area, is examined. Finally, the possibility of growth of pre-existing defects is shown. The results are overall in very good agreement with experimental observations. 相似文献
16.
Piotr Furmanski Jerzy Banaszek 《Journal of Quantitative Spectroscopy & Radiative Transfer》2004,84(4):563-573
A method is proposed to calculate temperature, conductive and radiative heat flux distributions in a participating medium. The method is based on the simultaneous solution of two non-linear and mutually conjugated equations describing distribution of both temperature and the so-called radiation function in the medium. In the case of isotropic scattering, the latter quantity, is proportional to the local energy density of radiation. The solution of the coupled non-linear equations is based on the finite element spatial discretization combined with the iterative technique. 相似文献
17.
为分析冷冻靶丸外部温度场,应用ANSYS软件对ICF空心微球靶的热传递进行了有限元分析。建立了单元传热的几何物理模型,靶丸微球呈空间均匀分布,计算区域由三个同心球壳组成,分别为液体层、靶丸壳层以及氦气层,氦气层厚度为球壳层厚度的7倍。模型左右两边界设为绝热边界条件,采用智能自动划分网格,设定参数为3,单元类型为三角形。模拟表明,在靶丸工作温度为24 K的情况下,为保持靶丸气泡受力平衡,自洽得到靶丸内部温度梯度为14.02 K/cm,以此求解出所施加的外部温度场为7.758 K/cm。将计算值与现有的实验结果进行了比较,模拟结果与国外实验值(8.2 K/cm)吻合得较好。 相似文献
18.
Laser shock forming of aluminum sheet: Finite element analysis and experimental study 总被引:1,自引:0,他引:1
Laser shock forming (LSF) is characterized in non-contact load, high pressure and high strain ratio. This new forming process using laser-induced shock pressure can shape sheet metal without complicated forming equipments. The know-how of the forming process is essential to efficiently and accurately control the deformation of sheet metal. Experiment and numerical simulation are the important approaches for forming analysis. Taken the aluminum sheets with different thickness as the specimen, the finite element (FE) analysis for LSF was performed. In the paper, Q-switch Nd:YAG Laser with a maximum power density of 4.5 GW/cm2 was used. The simulation results were in good agreement with the experiment. It showed that the formed aluminum sheets were in the form of concavo-convex. Finally, the transient and static deformations of thin sheet metal under specific operation conditions were also studied. 相似文献
19.
This paper reports a finite element analysis of multiple ion receiving plates to investigate the optimum number of plates for achieving fine-grained resolution in ionizer balance measurement. Both square and circular plates, also subdivided into 4, 9, 16, 25, and 36 segment plates, were modeled in an electrostatic field. The potential distribution of each model was further analyzed by simple linear regression to assess the measurement resolution. The results indicate that the segmented plates provide improved measurement resolution. 相似文献