首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Sr-doped and Sr-free La1 − xSrxMn1 − yCryO3 ± δ (LSMC, x(Sr) = 0-0.2, y(Cr) = 0.4-0.6) perovskite-type oxides were synthesized and evaluated as single phase anodes for use in intermediate temperature solid oxide fuel cell applications. Their thermo-chemical and chemical stabilities were investigated in hydrogen at high temperatures and correlated with their oxygen non-stoichiometry (3 ± δ), determined by permanganate titration. The catalytic activity towards hydrogen oxidation was examined as a function of oxide sintering time, operating temperature, and the Sr and Cr contents, using a Pt mesh current collector. While all of the perovskite oxides studied here showed some irreversible performance degradation with time under both open circuit and anodically polarized conditions, La0.9Sr0.1Mn0.6Cr0.4O3.03 (LSMC9164), sintered at 1200 °C for 10 h, was found to be the most catalytically active and also the most stable.  相似文献   

2.
Preparation of LaNi1 − xFexO3, which is one of the candidate materials of solid oxide fuel cell cathode, current collecting layer and interconnect coating was examined with Pechini method and solid state reaction method. Single phase LaNi1 − xFexO3 with large Ni content has successfully been prepared by low temperature sintering as 750 °C with Pechini method, whereas large amount of raw materials has remained with solid state reaction method by sintering at the same temperature. It can be ascribed to more homogenous cation distribution in raw powder material prior to sintering with Pechini method. It has also been revealed that LaNi1 − xFexO3 with x lower than 0.3 is thermodynamically unstable in air above 1000 °C. LaNi0.6Fe0.4O3 showed superior property as cathode material with high electrical conductivity, thermodynamic stability and appropriate sintering property.  相似文献   

3.
Raman scattering has been used to study the influence of cobalt, an effective dopant to obtain SrTiO3 magnetic oxide, on the lattice dynamics of SrTiO3. It is found that Co doping increases the lattice defects and induces a Raman vibration mode of 690 cm−1. On the other hand, the ferromagnetism dependence on the x and annealing temperature was clearly and coherently observed in SrTi1−xCoxO3 (x = 0, 0.01, 0.03 and 0.05) nanoparticles. It is found that the ferromagnetism of SrTi1−xCoxO3 nanoparticles is weakly related to crystal deformation and oxygen vacancies in SrTiO3. So, F-center model can explain the origin of the ferromagnetism in the prepared Co-doped SrTiO3 samples. At the same time, the finding of large room-temperature ferromagnetism (1.6 emu/g) in this system would stimulate further interest in the area of more complicated ternary oxides.  相似文献   

4.
Structural, electronic and optical properties as well as structural phase transitions of ternary alloy CdxZn1 − xS have been investigated using the first-principles calculations based on the density functional theory. We found that the crystal structure of CdxZn1 − xS alloys transforms from wurtzite to zinc blende as Cd content of x=0.83x=0.83. Effect of Cd content on electronic structures of CdxZn1 − xS alloys has been studied. The bandgaps of CdxZn1 − xS alloys with wurtzite and zinc blende structures decrease with the increase of Cd content. Furthermore, dielectric constant and absorption coefficient also have been discussed in detail.  相似文献   

5.
A new series Nd:Lu3ScxGa5 − xO12 (x = 0.5, 0.8, 1, 1.2 and 1.5) laser crystals have been successfully grown by the optical floating zone method. Their absorption and luminescence spectra were measured at room temperature and spectral parameters were systemically calculated using Judd-Ofelt (JO) theory. The fluorescence τf lifetimes were experimentally measured and compared with the theoretical results. Diode-pumped continuous-wave (CW) laser performance at 1.06 μm with mixed crystals was demonstrated. The influence of different x values on laser performance and spectral parameters was also discussed. All the results show that Nd:Lu3ScxGa5 − xO12 series crystals should be suitable for laser application.  相似文献   

6.
La0.6Sr0.4CoxFe1−xO3−δ (LSCF), La0.6Sr0.4Cu0.2Fe0.8O3−δ, Ba0.5Sr0.4Co0.8Fe0.2O3−δ and LaFeO3−δ nanoparticles were synthesized by a reverse micelle procedure. Controlling the size of the micelles through the water:oil phase ratio enabled synthesis of phase pure perovskite particles with average sizes from 14 nm to 50 nm. Small amounts of an impurity phase, likely cobalt oxide, were detected in the XRD spectrum of high cobalt content samples of LSCF (x = 0.8). La0.6Sr0.4Co0.2Fe0.8O3−δ nanoparticles were utilized to coat the surface of a dense thin-film La0.6Sr0.4Co0.2Fe0.8O3−δ solid oxide fuel cell cathode. The polarization resistance of the nanoparticle coated electrode, measured at open circuit in air at 973 K, was 20% lower than an equivalent un-coated electrode.  相似文献   

7.
A series of Ce1−xCuxO2 nanocomposite catalysts with various copper contents were synthesized by a simple hydrothermal method at low temperature without any surfactants, using mixed solutions of Cu(II) and Ce(III) nitrates as metal sources. These bimetal oxide nanocomposites were characterized by means of XRD, TEM, HRTEM, EDS, N2 adsorption, H2-TPR and XPS. The influence of Cu loading (5-25 mol%) and calcination temperature on the surface area, particle size and catalytic behavior of the nanocomposites have been discussed. The catalytic activity of Ce1−xCuxO2 nanocomposites was investigated using the test of CO oxidation reaction. The optimized performance was achieved for the Ce0.80Cu0.20O2 nanocomposite catalyst, which exhibited superior reaction rate of 11.2 × 10−4 mmol g−1 s−1 and high turnover frequency of 7.53 × 10−2 s−1 (1% CO balanced with air at a rate of 40 mL min−1, at 90 °C). No obvious deactivation was observed after six times of catalytic reactions for Ce0.80Cu0.20O2 nanocomposite catalyst.  相似文献   

8.
Zn1−xGdxS (x = 0.00, 0.02 and 0.04) nanoparticles were synthesized by facile chemical co-precipitation method using PVP as a surfactant. ZnS nanoparticles could be doped with Gd ions during synthesis without altering the XRD patterns of ZnS. Also, the pattern of the powders showed cubic zincblende structure. The particle size obtained from the XRD studies lies in the range 3-5 nm, whereas from TEM analysis it is 4 nm for x = 0.02 sample. The UV-Vis absorption spectra revealed that Zn1−xGdxS nanoparticles exhibit strong confinement effect as the blue shift in the absorption spectra with that of the undoped ZnS. The photoluminescence spectra showed enhanced luminescence intensity and the entry of Gd into host lattice.  相似文献   

9.
The variation of the oxygen content, xO, of synthetic fayalite (Fe2SiO4) single crystals was investigated thermogravimetrically at 1130 °C as a function of the oxygen activity, aO2 (= PO2/PO2° ≈ fO2/fO2° with PO2° ≈ fO2° = 1 bar ≈ 1 atm). It was found that xO varies less in fayalite single crystals than in polycrystalline Fe2SiO4 studied earlier. The majority defects are most likely cation vacancies, (VMe2+)″, ferric ions on M-sites, (Fe3+Me2+), and ferric ions on Si-sites, (Fe3+Si4+)′. Furthermore, the diffusion of iron in synthetic olivine single crystals ((FexMg1 − x)2SiO4) was studied at 1130 °C as a function of orientation, oxygen activity, and cationic composition. The observed oxygen activity dependencies suggest that cations move via different types of cation vacancies, most likely isolated vacancies, (VFe2+)″, and possibly neutral associates, {2(Fe3+Me2+) ⋅ (VMe2+)′ ? ′}x, the latter being minority defects. In addition, the electrical conductivity, σ, of fayalite single crystals was investigated as a function of orientation and oxygen activity within the stability field of fayalite at 1130 °C. The observed oxygen activity dependencies are compatible with (VMe2+)′ ? ′, (Fe3+Me2+), and (Fe3+Si4+)′ being the majority point defects at high aO2 and with h and e′ as the majority defects at low aO2. The electrical conduction in fayalite is governed by contributions of electrons and holes. This extended point defect model for fayalite is also compatible with data for the variation of the oxygen content and for the iron tracer diffusion.  相似文献   

10.
A series of ZnO1−xSx alloy films (0 ≤ x ≤ 1) were grown on quartz substrates by radio-frequency (rf) magnetron sputtering of ZnS ceramic target, using oxygen and argon as working gas. X-ray diffraction measurement shows that the ZnO1−xSx films have wurtzite structure with (0 0 2) preferential orientation in O-rich side (0 ≤ x ≤ 0.23) and zinc blende structure with (1 1 1) preferential orientation in S-rich side (0.77 ≤ x ≤ 1). However, when the S content is in the range of 0.23 < x < 0.77, the ZnO1−xSx film consists of two phases of wurtzite and zinc blende or amorphous ZnO1−xSx phase. The band gap energy of the films shows non-linear dependence on the S content, with an optical bowing parameter of about 2.9 eV. The photoluminescence (PL) measurement reveals that the PL spectrum of the wurtzite ZnO1−xSx is dominated by visible band and its PL intensity and intensity ratio of UV to visible band decrease greatly compared with undoped ZnO. All as-grown ZnO1−xSx films behave insulating, but show n-type conductivity for w-ZnO1−xSx and maintain insulating properties for β-ZnO1−xSx after annealed. Mechanisms of effects of S on optical and electrical properties of the ZnO1−xSx alloy are discussed in the present work.  相似文献   

11.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

12.
The Zn1−xMgxO thin films were grown on Al2O3 substrate with various O2 flow rates by plasma-assisted molecular beam epitaxy (P-MBE). The growth conditions were optimized by the characterizations of morphology, structural and optical properties. The Mg content of the Zn1−xMgxO thin film increases monotonously with decreasing the oxygen flux. X-ray diffractometer (XRD) measurements show that all the thin films are preferred (0 0 2) orientated. By transmittance and absorption measurements, it was found that the band gap of the film decreases gradually with increasing oxygen flow rate. The surface morphology dependent on the oxygen flow rate was also studied by field emission scanning electron microscopy (FE-SEM). The surface roughness became significant with increasing oxygen flow rate, and the nanostructures were formed at the larger flow rate. The relationship between the morphology and the oxygen flow rate of Zn1−xMgxO films was discussed.  相似文献   

13.
We report the effects of Al doping on the structure, magnetic properties, and magnetocaloric effect of antiperovskite compounds Ga1−xAlxCMn3 (0≤x≤0.15). Partial substitutions of Al for Ga enhance the Curie temperature (from 250 K for x=0.0 to 312 K for x=0.15) and the saturation magnetization. On increasing the doping level x, the maximum values of the magnetic entropy change (−ΔSM) decreases while the temperature span of ΔSM vs. T plot broadens. Furthermore, the relative cooling power (RCP) is also studied. For 20 kOe, the RCP value tends to saturate at a high doping level (for x=0.12, 119 J/kg at 296 K). However, at 45 kOe, the RCP value increases quickly with increasing x (for x=0.15, 293 J/kg at 312 K). Considering the relatively large RCP and inexpensive raw materials, Ga1−xAlxCMn3 may be alternative candidates for room-temperature magnetic refrigeration.  相似文献   

14.
Bismuth layer-structured (Bi7−xSrx)(Fe3−xTi3+x)O21 (BSFT) ceramics were synthesized and the ferroelectric properties and crystal structure were investigated. X-ray powder diffraction profiles and refinement of the lattice parameters indicated single phase BSFT was obtained in the composition range 0-1.5. The lattice parameter b of BSFT remained almost constant, while a slight decrease in the lattice parameter a was observed by the Sr and Ti substitution for Bi and Fe, respectively, which indicated an increase in the orthorhombicity. The dependence of the BSFT lattice parameter on temperature implied a phase transition from the orthorhombic to the tetragonal phase, which was in good agreement with the Curie temperature. The remnant polarization Pr, of BSFT was significantly improved by the Sr and Ti substitution for Bi and Fe, and ranged from 9 to 16 μC/cm2, although no remarkable variation in the coercive field Ec was observed. As a result, a well-saturated P-E hysteresis loop of BSFT ceramic was obtained at x=0.5 with a Pr of 30 μC/cm at an applied voltage of 280 kV/cm.  相似文献   

15.
Porous Ni-YSZ (YSZ—yttria-stabilized zirconia) films were fabricated by reactive co-sputtering of a Ni and a Zr-Y target, followed by sequentially annealing in air at 900 °C and in vacuum at 800 °C. The Ni-YSZ films comprised small grains and pores that were tens of nanometers in size. The porous Ni-YSZ films were used as an anode on one side of a YSZ electrolyte disc and a La0.7Sr0.3MnO3 thick film was used as a cathode on the other side of the disc to form solid oxide fuel cells (SOFCs). The voltage-current curves of the SOFCs with single- and a triple-layered porous anodes were measured in a single-chamber configuration, in a mixture of CH4 and air (CH4:O2 volume ratio=2:1). The maximum power density of the SOFC using the single-layered porous Ni-YSZ thin films as the anode was 0.38 mW cm−2, which was lower than that of 0.76 mW cm−2, obtained using a screen-printed Ni-YSZ thick anode. The maximum power density of the SOFC with a thin anode was increased, but varied between 0.6 and 1.14 mW cm−2 when a triple-layered porous Ni-YSZ anode was used.  相似文献   

16.
Thin films of samples of the glassy SxSe100−x system with 0 ≤ x ≤ 7.28 have been prepared by thermal evaporation technique at room temperature (300 K). X-ray investigations show that the structure of pure selenium (Se) does change seriously by the addition of small amount of sulphur S ≤7.28%. The lattice parameters were determined as a function of sulphur content. Results of differential thermal analysis (DTA) of the glassy compositions of the system SxSe100−x were discussed. The characteristic temperatures (Tg, Tc and Tm) were evaluated. Dark electrical resistivities, ρ, of SxSe100−x thin films with different thicknesses from 100 to 500 nm, were measured in the temperature range from 300 to 423 K. Two distinct linear parts with different activation energies were observed. The variation of electrical resistivity of examined compositions has been discussed as a function of the film thickness, temperature and the sulphur content. The application of Mott model for the phonon assisted hopping of small polarons gave the same two activation energies obtained from the resistivity temperature calculations.  相似文献   

17.
Un-hydrogenated and hydrogenated Cu, Co co-doped ZnO (Zn0.96−xCo0.04CuxO, x=0.03, 0.04 and 0.05) nanopowders have been synthesized by co-precipitation method. The synthesized samples have been characterized by powder X-ray diffraction, energy dispersive X-ray spectra, UV–Visible spectrophotometer and Fourier transform infrared spectroscopy. The calculated average crystalline size increases from 37.3 to 50.6 nm for un-hydrogenated samples from x=0.03 to 0.05 and it changes from 29.4 to 34.9 nm for hydrogenated samples. The change in lattice parameters, micro-strain, a small shift of X-ray diffraction peaks towards lower angles and reduction in energy gap reveal the substitution of Cu2+ ions into Zn–Co–O lattice. The hydrogenation effect reduces the particle size and induces the more uniform distribution of particles than the un-hydrogenated samples which is confirmed by SEM micrographs. Photoluminescence spectra of Zn0.96−xCo0.04CuxO system shows that red shift in near band edge ultraviolet emission from 393 to 403 nm with suppressing intensity and a blue shift in green band emission from 537 to 529 nm with enhancing intensity confirms the substitution of Cu into the Zn–Co–O lattice.  相似文献   

18.
Single-phase M-type hexagonal ferrites Sr1−xLaxFe12O19 (0≤x≤1) were prepared by a ceramic route. The stability limits of the ferrite phases were determined with a combination of various microscopy techniques, electron-probe micro-analysis, powder X-ray diffraction and thermal analysis. SrFe12O19 (x=0) is stable up to 1420 °C, whereas LaFe12O19 (x=1) exists between 1360 and 1400 °C only. The lattice parameters of Sr1−xLaxFe12O19 exhibit a linear variation with x, i.e. a0 slightly increases and c0 decreases with x, leading to a decrease of the unit cell volume with x. The saturation magnetization at T=5 K decreases with increasing La concentration. Room temperature Mössbauer analysis shows that the Fe3+/Fe2+ valence change occurs in the 2a sites for the whole composition range.  相似文献   

19.
The formation mechanism of CH3O by the adsorption and decomposition of CH3OH on clean and oxygen-precovered Cu2O(1 1 1) surface has been investigated with density functional theory method together with the periodic slab models. Two possible formation pathways of CH3O by CH3OH decomposition on oxygen-precovered (Opre) Cu2O(1 1 1) surface were proposed and discussed. One is the O-H bond-cleavage of CH3OH with H migration to Opre to form CH3O; the other is the C-O bond-scission of CH3OH with CH3 migration to Opre leading to CH3Opre. The calculated results show that the O-H bond-breaking path has the lowest activation barrier 26.8 kJ mol−1, the presence of oxygen-precovered on Cu2O(1 1 1) surface exhibits a high surface reactivity toward the formation of CH3O by the O-H bond-cleavage of CH3OH, and reduce the activation barrier of O-H bond-cleavage. The C-O bond-breaking path was inhibited by dynamics, suggesting that the O atom of CH3O is not from the oxygen-precovered, but comes from the O of CH3OH. Meanwhile, the calculated results give a clear illustration about the formation mechanism of CH3O in the presence of oxygen and the role of oxygen at the microscopic level.  相似文献   

20.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号