首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
La0.6Sr0.4CoxFe1−xO3−δ (LSCF), La0.6Sr0.4Cu0.2Fe0.8O3−δ, Ba0.5Sr0.4Co0.8Fe0.2O3−δ and LaFeO3−δ nanoparticles were synthesized by a reverse micelle procedure. Controlling the size of the micelles through the water:oil phase ratio enabled synthesis of phase pure perovskite particles with average sizes from 14 nm to 50 nm. Small amounts of an impurity phase, likely cobalt oxide, were detected in the XRD spectrum of high cobalt content samples of LSCF (x = 0.8). La0.6Sr0.4Co0.2Fe0.8O3−δ nanoparticles were utilized to coat the surface of a dense thin-film La0.6Sr0.4Co0.2Fe0.8O3−δ solid oxide fuel cell cathode. The polarization resistance of the nanoparticle coated electrode, measured at open circuit in air at 973 K, was 20% lower than an equivalent un-coated electrode.  相似文献   

2.
The effect of nickel substitution on defect chemistry, electrical properties, and dimensional stability of calcium-doped yttrium chromite was studied for use as an interconnect material in high temperature solid oxide fuel cells (SOFCs). The compositions of Y0.8Ca0.2Cr1 − xNixO3 ± δ (x = 0-0.15), prepared using the glycine nitrate process, showed single phase orthorhombic perovskite structures over a wide range of oxygen partial pressures (4.6 × 10− 20 atm ≤ pO2 ≤ 0.21 atm at 900 °C). X-ray diffraction (XRD) analysis indicated that most of the nickel ions replacing chromium ions are divalent and act as acceptor dopants, leading to a substantial increase in conductivity. In particular, the conductivity at 900 °C in air increased from 10 S/cm to 34 S/cm with 15% nickel substitution, and an increase in charge carrier density was confirmed by Seebeck measurements, which validated the predominant Ni2+ oxidation state. A point defect model was derived, and the relationship between electrical conductivity and oxygen partial pressure was successfully fitted into the proposed model. The defect modeling results indicated that nickel substitution improves the stability of calcium-doped yttrium chromite toward reduction and suppresses the oxygen vacancy formation, which results in significantly increased electrical conductivity in reducing environment. The electrical conductivity of Y0.8Ca0.2Cr0.85Ni0.15O3 ± δ at 900 °C in reducing atmosphere (pO2 = 10− 17 atm) was 5.8 S/cm, which was more than an order of magnitude higher than that of Y0.8Ca0.2CrO3 ± δ (0.2 S/cm). Improved stability in reducing atmosphere was further confirmed by dilatometry measurements showing reduced isothermal “chemical” expansion, and the isothermal expansion in reducing atmosphere (pO2 = 10− 17 atm) at 900 °C decreased from 0.07% for Y0.8Ca0.2CrO3 ± δ to 0.03% for Y0.8Ca0.2Cr0.85Ni0.15O3 ± δ. Based on these results, enhanced electrical performance and mechanical integrity is expected with nickel substitution on calcium-doped yttrium chromite in SOFC operating conditions.  相似文献   

3.
The oxygen deficiency of perovskite-type Pr0.5Sr0.5FeO3−δ, studied by coulometric titration, thermogravimetry and Mössbauer spectroscopy, is significantly higher than that in La0.5Sr0.5FeO3−δ at 973-1223 K. The variations of hole mobility and Seebeck coefficient in oxidizing atmospheres, where the total conductivity of praseodymium-strontium ferrite is predominantly p-type electronic, suggest progressive delocalization of the p-type charge carriers on increasing oxygen chemical potential. As for other perovskite-type ferrites, reduction leads to the co-existence of vacancy-ordered and disordered domains. The n-type electronic conductivity of Pr0.5Sr0.5FeO3−δ at reduced p(O2) and the hole transport under oxidizing conditions are both lower compared to the La-containing analogue. Analogous conclusion was drawn for the ionic conductivity, calculated from the steady-state oxygen permeation data under oxidizing conditions and from the p(O2)-dependencies of total conductivity in the vicinity of electron-hole equilibrium points where the average iron oxidation state is 3+. The similar activation energies for partial ionic and electronic conductivities in Ln0.5Sr0.5FeO3−δ (Ln=La, Pr) indicate that the presence of praseodymium does not alter any of the conduction mechanisms but decreases the charge-carrier mobility due to the smaller radius of Pr3+ cations stabilized in the perovskite lattice.  相似文献   

4.
Electrochemical synthesis of ammonia was investigated using a cobalt-free La0.6Sr0.4Fe0.8Cu0.2O3-δ-Ce0.8Sm0.2O2-δ (LSFCu-SDC) composite cathode and SDC-ternary carbonate composite electrolyte. La0.6Sr0.4Fe0.8Cu0.2O3-δ and Ce0.8Sm0.2O2-δ were prepared via combined EDTA-citrate complexing sol-gel and glycine nitrate processes, respectively, and characterised by X-ray diffraction (XRD). Ammonia was successfully synthesised from wet hydrogen and dry nitrogen under atmospheric pressure using Ni-SDC, SDC-carbonate and LSFCu-SDC composites as anode, electrolyte and cathode respectively. Ammonia formation was observed at 400, 425, 450 and 475 °C and the maximum rate of ammonia production was found to be 5.39 × 10−9 mol s−1 cm−2 at 450 °C and 0.8 V. The AC impedance measurements were recorded before and after the ammonia synthesis in the range of temperature 400-475 °C. The formation of ammonia at the N2 side together with stable current at 450 °C under constant voltage demonstrates that SDC-(Li/Na/K)2CO3 composite electrolyte exhibits significant proton conduction at a temperature around 450 °C.  相似文献   

5.
The chemomechanical properties and microstructural stability of nanocrystalline PrxCe1 − xO2 − δ solid solutions are studied as a function of temperature by in situ X-ray diffraction measurements under oxidizing conditions at P(O2) ~ 200 mbar. The chemical expansion coefficient of nanocrystalline powder specimens, operative at intermediate temperatures during which Pr4+ is reduced to Pr3+, is found to be similar to that obtained for coarse-grained PrxCe1 − xO2 − δ. This is contrary to reports regarding variation of physical and chemical properties with crystallite size. The thermal expansion coefficient, measured under conditions for which PrxCe1 − xO2 − δ is highly oxygen deficient, was found to be greater than that measured for fully oxidized PrxCe1 − xO2 − δ, with potential sources of these changes discussed. Moreover, the microstructure of nanocrystalline PrxCe1 − xO2 − δ is observed to have excellent stability at working temperatures below 800 °C, enabled by the inherent microstrain in the structure, highlighting the potential application of this material for solid state electrochemical devices.  相似文献   

6.
In3+ was used as dopant for BaZrO3 proton conductor and 30 at%-doped BaZrO3 samples (BaZr0.7In0.3O3-δ, BZI) were prepared as electrolyte materials for proton-conducting solid oxide fuel cells (SOFCs). The BZI material showed a much improved sinteractivity compared with the conventional Y-doped BaZrO3. The BZI pellets reached almost full density after sintering at 1600 °C for 10 h, whereas the Y-doped BaZrO3 samples still remained porous under the same sintering conditions. The conductivity measurements indicated that BZI pellets showed smaller bulk but improved grain boundary proton conductivity, when compared with Y-doped BaZrO3 samples. A total proton conductivity of 1.7 × 10−3 S cm−1 was obtained for the BZI sample at 700 °C in wet 10% H2 atmosphere. The BZI electrolyte material also showed adequate chemical stability against CO2 and H2O, which is promising for application in fuel cells.  相似文献   

7.
It was investigated whether a perovskite-type proton conductor, here BaCe0.95Y0.05O3  δ (BCY), is suitable as sensing material for a novel type of thermoelectric hydrogen sensor. Therefore, the hydrogen and oxygen concentration dependence of the thermopower of BaCe0.95Y0.05O3  δ was determined and was found to be in the same range as the value derived from theory. The hydrogen dependence was also measured at different temperatures, and only a comparatively small temperature dependence of the thermopower was observed.  相似文献   

8.
Thermal stability, oxygen non-stoichiometry and electrical conductivity of LaNi0.6Fe0.4O3δ were investigated in the temperature region of 20-1000 °C in Ar/O2 gas flows at oxygen partial pressures between 0.5 and 21,000 Pa. Diffusion mobility was measured in Ar/O2 gas flow at pO2 = 18 Pa. Crystal structure of this compound was found to be stable at the mentioned experimental conditions. LaNi0.6Fe0.4O3δ is a p-type semiconductor with metallic type conductivity above 150 °C at the investigated pO2 range. Two different (fast and slow) oxygen exchange areas on the temperature-pO2 diagram were established, which are due to two different oxygen anion positions in the double B-site mixed perovskite structure. Oxygen non-stoichiometry in the fast oxygen exchange region reaches about 0.005 of oxygen atomic index. Chemical diffusion and oxygen surface exchange coefficients do not vary at 600-800 °C, but show visible increase above 800-850 °C.  相似文献   

9.
BaZr0.1Ti0.9O3 and BaZr0.2Ti0.8O3 (BZT) thin films were deposited on Pt/Ti/LaAlO3 (1 0 0) substrates by radio-frequency magnetron sputtering, respectively. The films were further annealed at 800 °C for 30 min in oxygen. X-ray diffraction θ-2θ and Φ-scans showed that BaZr0.1Ti0.9O3 films displayed a highly (h 0 0) preferred orientation and a good cube-on-cube epitaxial growth on the LaAlO3 (1 0 0) substrate, while there are no obvious preferential orientation in BaZr0.2Ti0.8O3 thin films. The BaZr0.1Ti0.9O3 films possess larger grain size, higher dielectric constant, larger tunability, larger remanent polarization and coercive electric field than that of BaZr0.2Ti0.8O3 films. Whereas, BaZr0.1Ti0.9O3 films have larger dielectric losses and leakage current density. The results suggest that Zr4+ ion can decrease dielectric constant and restrain non-linearity. Moreover, the enhancement in dielectric properties of BaZr0.1Ti0.9O3 films may be attributed to (1 0 0) preferred orientation.  相似文献   

10.
We synthesized (Ce0.9Hf0.1)1−xPrxO2−δ (x=0, 0.05 and 0.1) using the polymerized complex method. The synthesized samples, as well as the samples after thermochemical two-step water-splitting cycles have a fluorite structure and Pr exists in the solid solutions with both trivalent and tetravalent states, as suggested by powder X-ray Diffraction (XRD) Patterns. The reduction fraction of Ce4+ in redox cycles (oxidation step in air) and two-step water-splitting cycles (oxidation step in steam) indicates that the addition of Pr into Ce–Hf oxide solid solution cannot improve the reduction fraction of Ce4+ during the redox cycles but both the reduction fraction of Ce4+ and H2 yield are significantly enhanced during two-step water-splitting cycles. The chemical composition of 10 mol% Pr doped Ce0.9Hf0.1O2 exhibits the highest reactivity for hydrogen production in H2-generation step by yielding an average amount of 5.72 ml g−1 hydrogen gas, which is much higher than that evolved by Ce0.9Hf0.1O2 (4.50 ml g−1). The enhancement effect of doping Pr on the performance during two-step water-splitting cycles is because of the multivalent properties of Pr, which can: (1) reduce the amount of Ce3+ oxidized by contamination air (contamination air eliminated by partial oxidation of Pr3+ to Pr4+) in H2-generation step; (2) enhance the reaction rate in H2-generation step by improving the ionic conductivity (extrinsic oxygen vacancies created by the substitution of Ce4+ by Pr3+).  相似文献   

11.
Effect of preparation method for Pr0.6Sr0.4Co0.2Fe0.8O δ (PSCF) on its electrochemical performance was investigated. Powder samples were synthesized by hexamethylenetetramine (HMTA) and EDTA-citric acid (EC) techniques, respectively. The particles synthesized by HMTA were smaller than those prepared by EC method as proved by TEM. X-ray photoelectron spectroscopy illuminated that more oxygen sites including oxygen vacancy on the surface of HMTA-derived PSCF exist than that of EC-derived PSCF. The area specific resistance (ASR) value of HMTA-derived PSCF cathode was as low as 0.454 Ω cm2 at 600 °C, whereas the ASR value of EC-derived PSCF was 0.641 Ω cm2. The results in the present study demonstrated the advantages of the HMTA method in the synthesis of highly catalytic active PSCF oxide powder for SOFCs.  相似文献   

12.
Sr-doped and Sr-free La1 − xSrxMn1 − yCryO3 ± δ (LSMC, x(Sr) = 0-0.2, y(Cr) = 0.4-0.6) perovskite-type oxides were synthesized and evaluated as single phase anodes for use in intermediate temperature solid oxide fuel cell applications. Their thermo-chemical and chemical stabilities were investigated in hydrogen at high temperatures and correlated with their oxygen non-stoichiometry (3 ± δ), determined by permanganate titration. The catalytic activity towards hydrogen oxidation was examined as a function of oxide sintering time, operating temperature, and the Sr and Cr contents, using a Pt mesh current collector. While all of the perovskite oxides studied here showed some irreversible performance degradation with time under both open circuit and anodically polarized conditions, La0.9Sr0.1Mn0.6Cr0.4O3.03 (LSMC9164), sintered at 1200 °C for 10 h, was found to be the most catalytically active and also the most stable.  相似文献   

13.
Ag-network was successfully deposited by VA-EP (vacuum assisted electroless plating) method on Pr1.6Sr0.4NiO4-YSZ cathode to form (1−x) wt% Pr1.6Sr0.4NiO4wt% YSZ-Ag (x=0, 10, 20, 30, 40) (abbr. PYx-Ag) composite cathode. XRD results suggested that there was a good chemical stability between Pr1.6Sr0.4NiO4 and YSZ at temperatures below 1050 °C. PY20-Ag cathode exhibited higher exchange current density, lower overpotential and ASR (Area Specific Resistance) than PY20 cathode. At 650 °C, the ASR of PY20-Ag cathode was 2.5 Ω cm2, which was only about 42% of that of PY20, 5.9 Ω cm2. PY20-Ag can be a promising candidate for SOFC cathode.  相似文献   

14.
The oxygen nonstoichiometry of La0.6Sr0.4FeO3 − δ was measured at intermediate temperatures (773 to 1173 K) between 1 bar and the decomposition oxygen partial pressure by thermogravimetry and coulometric titration. The decomposition of the ABO3 perovskite phase was found to occur at low oxygen partial pressures (below 10− 20 bar). Using an atmosphere-controlled high-temperature XRD setup, the rhombohedral lattice parameters were obtained between 10− 4 and 1 bar at 773 to 1173 K. A phase transition from rhombohedral to cubic might be expected to occur at high temperatures and for δ near the plateau at δ = [Sr] / 2. The lattice expansion was separated into “pure” thermal and chemically induced expansion by combining the lattice parameters with the oxygen nonstoichiometry data. The linear thermal expansion was formulated with a “pure” thermal expansion coefficient of αth = 11.052 · 10− 6 K− 1 and a chemical expansion coefficient of αchem = 1.994 · 10− 2.The results were compared with previous data obtained for La0.6Sr0.4Co1 − yFeyO3 − δ with y = 0.2-0.8. La0.6Sr0.4FeO3 − δ was confirmed to show the highest thermo-chemical stability. While the chemical expansion of La0.6Sr0.4Co1 − yFeyO3 − δ seems little affected by the iron content, the thermal expansion coefficient was the lowest for La0.6Sr0.4FeO3 − δ.  相似文献   

15.
Microcosmic investigations of weak red-emitting materials are crucial for their further development and application. In this work, we have focused on the band structures and electronic properties of Pr mono- and (Zn, Pr) co-doped CaTiO3 using density functional theory. Zn substitution for Ca or Ti tends to form clusters energetically with Pr substituting for Ca in CaTiO3. In Pr mono-doped CaTiO3, the O2p→Ti3d transition in CaTiO3 host corresponds to the centered 330 nm excitation spectra. The gap states above the valence band of ∼1.30 eV and ∼2.06 eV are hybridized by Pr4f, O2p and Ti3d orbitals. They are mainly due to Pr4f orbitals in CaTiO3:Pr. The former gap level is related to red emission at 614 nm due to 1D23H4 transition of Pr3+ activator. The latter is related to the excitation spectra centered at 380 nm due to the low-lying Pr-to-mental intervalence charge transfer transitions (Pr3+-O2−-Ti4+?Pr4+-O2−-Ti3+). The band structures of (Zn, Pr) co-doped CaTiO3 keep the similar gap levels to those in Pr mono-doped CaTiO3. The incorporation of Zn brings out the two stronger localized gap states, which are hybridized by Pr4f, O2p and Ti3d orbitals, in comparison with those in Pr mono-doped CaTiO3. Therefore, when Zn impurities are added into Pr doped CaTiO3, the present calculations visualize the two enhanced levels and the distorted structures around Pr.  相似文献   

16.
Y-doped La0.7Sr0.3CrO3−δ is a promising anode catalyst for solid oxygen fuel cell (SOFC). The performances of chemical and physical are measured by SEM, XRD and FT-IR. The conductivities of catalyst are measured by DC four-probe method in 20% H2S-N2, 3% H2-N2 and air from 573 K to 1173 K, respectively. The results show that Y-doped La0.7Sr0.3CrO3−δ powders have perfect perovskite phase structure with no extra peaks and exhibit good chemical compatibility with Ce0.8Sm0.2O1.9 (as electrolyte) in air. Through XRD and FT-IR analysis no sulfur-containing species is detected after exposure to the 20% H2S at 1173 K for 5 h. Meanwhile, Y-doped La0.7Sr0.3CrO3−δ shows that the highest conductivity is 0.21 S/cm at 1173 K in H2S. The open circuit voltages are 0.85 V at 1173 K in H2S and 1.04 V at 823 K in H2. The maximal power densities are 12.4 mW/cm2 in H2S and 1.59 W/cm2 in H2 for cells comprising Y-doped La0.7Sr0.3CrO3−δ-Sm0.2Ce0.8O1.9/Sm0.2Ce0.8O1.9/Ag.  相似文献   

17.
SrBi2−xPrxNb2O9 (x=0, 0.04 and 0.2) ceramics were prepared by a solid state reaction method. X-ray diffraction analysis indicated that single-phase layered perovskite structure ferroelectrics were obtained. A relaxor behavior of frequency dispersion was observed among Pr-doped SrBi2Nb2O9. The degree of frequency dispersion ΔT increased from 0 for x=0-7 °C for x=0.2, and the extent of relaxor behavior γ increased from 0.94 for x=0-1.45 for x=0.2. The substitution of Pr ions for Bi3+ ions in the Bi2O2 layers resulted in a shift of the Curie point to lower temperatures and a decrease in remanent polarization. In addition, the coercive field 2Ec reduced from 110 kV/cm for an undoped specimen to 90 kV/cm for x=0.2.  相似文献   

18.
Perovskite La0.8Sr0.2Co0.2Cr0.8O3 − δ (LSCC) ceramic synthesized by the conventional ceramic processing technique was studied as a novel coating material for the cathode current collector in Na/S battery. Its structure, electrical conductivity, density and thermal expansion coefficient (TEC) were investigated. The corrosion performance of LSCC was in particular evaluated by electrochemical techniques in combination with long-term dip-immersion tests. The results indicated that LSCC exhibited excellent corrosion resistance in molten sodium tetrasulfide at 350 °C. The corrosion current density icorr (0.081 mA cm− 2) was much lower than that of 316 L stainless steel by approximately two orders of magnitude. The corrosion rate of LSCC deduced from immersion test was as low as about 12 μm year− 1.  相似文献   

19.
Electrical conductivity, internal friction techniques and dilatometer have been used to investigate the oxygen relaxation, phase transition and thermal expansion behavior of GdBaCo2O5 + δ. The main electronic charge carriers in GdBaCo2O5 + δ are electronic holes, which could be assigned to the formation of Co4+. The oxygen exchange kinetics intensely depends on oxygen partial pressure and is also closely related to temperature. Both electrical conductivity and internal friction give rise to an abnormal at about 75 °C, which are related to the insulator-metal transition occurring in GdBaCo2O5 + δ. One large relaxation internal friction peak, due to the motion of oxygen within Gd-O plane, is also found in the oxide. The average thermal expansion coefficient (TEC) of GdBaCo2O5 + δ is about 21.4 × 106 K1 between 500 °C and 900 °C.  相似文献   

20.
Oxygen nonstoichiometry (δ), total conductivity (σ) and thermoelectric power (S) of the LaFe0.7Ni0.3O3 − δ sample have been studied as functions of temperature and oxygen partial pressure. Based on the results of the direct reduction of the sample in hydrogen flow at 1100 °C the absolute oxygen content (3 − δ) has been found to vary from 2.999 to 2.974 in the range of 1273-1373 K and 10− 3-0.21 atm. The point defect equilibrium models have been proposed and fitted to the set of experimental data in the form of log p(O2) = f(δ)T dependences. The values of standard thermodynamic quantities of defect formation reactions have been assessed. The joint analysis of oxygen nonstoichiometry, total conductivity and thermoelectric power has been performed using a small-polaron approach. The values of partial conductivity, partial thermopower and mobilities of electronic charge carriers have been calculated. The p-type semiconducting behavior of LaFe0.7Ni0.3O3 − δ has been explained by the higher mobility values of electron holes than those of electrons in the whole range of thermodynamic parameters studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号