首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
Conditions on a topological space X under which the space C(X,R) of continuous real-valued maps with the Isbell topology κ is a topological group (topological vector space) are investigated. It is proved that the addition is jointly continuous at the zero function in Cκ(X,R) if and only if X is infraconsonant. This property is (formally) weaker than consonance, which implies that the Isbell and the compact-open topologies coincide. It is shown the translations are continuous in Cκ(X,R) if and only if the Isbell topology coincides with the fine Isbell topology. It is proved that these topologies coincide if X is prime (that is, with at most one non-isolated point), but do not even for some sums of two consonant prime spaces.  相似文献   

2.
The Isbell, compact-open and point-open topologies on the set C(X,R) of continuous real-valued maps can be represented as the dual topologies with respect to some collections α(X) of compact families of open subsets of a topological space X. Those α(X) for which addition is jointly continuous at the zero function in Cα(X,R) are characterized, and sufficient conditions for translations to be continuous are found. As a result, collections α(X) for which Cα(X,R) is a topological vector space are defined canonically. The Isbell topology coincides with this vector space topology if and only if X is infraconsonant. Examples based on measure theoretic methods, that Cα(X,R) can be strictly finer than the compact-open topology, are given. To our knowledge, this is the first example of a splitting group topology strictly finer than the compact-open topology.  相似文献   

3.
We characterize those topological spaces Y for which the Isbell and finest splitting topologies on the set C(X,Y) of all continuous functions from X into Y coincide for all topological spaces X. We also consider the same question for the coincidence of the restriction of the finest splitting topology on the upper semicontinuous set-valued functions to C(X,Y) and the finest splitting topology on C(X,Y). In the first case, the spaces in question are, after identifying points that are in each others closures, subsets of the two point Sierpiński space, which gives a converse and generalization of a result of S. Dolecki, G.H. Greco, and A. Lechicki. In the second case, the spaces in question are, after identifying points that are in each others closures, order bases for bounded complete continuous DCPOs with the Scott topology.  相似文献   

4.
Let C(X,Y) be the set of all continuous functions from a topological space X into a topological space Y. We find conditions on X that make the Isbell and fine Isbell topologies on C(X,Y) equal for all Y. For zero-dimensional spaces X, we show there is a space Z such that the coincidence of the Isbell and fine Isbell topologies on C(X,Z) implies the coincidence on C(X,Y) for all Y. We then consider the question of when the Isbell and fine Isbell topologies coincide on the set of continuous real-valued functions. Our results are similar to results established for consonant spaces.  相似文献   

5.
Let G be a topological group with the identity element e. Given a space X, we denote by Cp(X,G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence, and we say that X is: (a) G-regular if, for each closed set FX and every point xX?F, there exist fCp(X,G) and gG?{e} such that f(x)=g and f(F)⊆{e}; (b) G?-regular provided that there exists gG?{e} such that, for each closed set FX and every point xX?F, one can find fCp(X,G) with f(x)=g and f(F)⊆{e}. Spaces X and Y are G-equivalent provided that the topological groups Cp(X,G) and Cp(Y,G) are topologically isomorphic.We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of Cp(X,G). Since R-equivalence coincides with l-equivalence, this line of research “includes” major topics of the classical Cp-theory of Arhangel'ski? as a particular case (when G=R).We introduce a new class of TAP groups that contains all groups having no small subgroups (NSS groups). We prove that: (i) for a given NSS group G, a G-regular space X is pseudocompact if and only if Cp(X,G) is TAP, and (ii) for a metrizable NSS group G, a G?-regular space X is compact if and only if Cp(X,G) is a TAP group of countable tightness. In particular, a Tychonoff space X is pseudocompact (compact) if and only if Cp(X,R) is a TAP group (of countable tightness). Demonstrating the limits of the result in (i), we give an example of a precompact TAP group G and a G-regular countably compact space X such that Cp(X,G) is not TAP.We show that Tychonoff spaces X and Y are T-equivalent if and only if their free precompact Abelian groups are topologically isomorphic, where T stays for the quotient group R/Z. As a corollary, we obtain that T-equivalence implies G-equivalence for every Abelian precompact group G. We establish that T-equivalence preserves the following topological properties: compactness, pseudocompactness, σ-compactness, the property of being a Lindelöf Σ-space, the property of being a compact metrizable space, the (finite) number of connected components, connectedness, total disconnectedness. An example of R-equivalent (that is, l-equivalent) spaces that are not T-equivalent is constructed.  相似文献   

6.
7.
Let X be a completely regular Hausdorff space and Cb(X) be the space of all real-valued bounded continuous functions on X, endowed with the strict topology βσ. We study topological properties of continuous and weakly compact operators from Cb(X) to a locally convex Hausdorff space in terms of their representing vector measures. In particular, Alexandrov representation type theorems are derived. Moreover, a Yosida-Hewitt type decomposition for weakly compact operators on Cb(X) is given.  相似文献   

8.
We study the property of separability of functional space C(X) with the open-point and bi-point-open topologies and show that it is consistent with ZFC that there is a set of reals of cardinality \({\mathfrak{c}}\) such that a set C(X) with the open-point topology is not a separable space. We also show in a set model (the iterated perfect set model) that for every set of reals X, C(X) with the bi-point-open topology is a separable space.  相似文献   

9.
Let C(X,T) be the group of continuous functions of a compact Hausdorff space X to the unit circle of the complex plane T with the pointwise multiplication as the composition law. We investigate how the structure of C(X,T) determines the topology of X. In particular, which group isomorphisms H between the groups C(X,T) and C(Y,T) imply the existence of a continuous map h of Y into X such that H is canonically represented by h. Among other results, it is proved that C(X,T) determines X module a biseparating group isomorphism and, when X is first countable, the automatic continuity and representation as Banach-Stone maps for biseparating group isomorphisms is also obtained.  相似文献   

10.
For every Tychonoff space X we denote by Cp(X) the set of all continuous real-valued functions on X with the pointwise convergence topology, i.e., the topology of subspace of RX. A set P is a frame for the space Cp(X) if Cp(X)⊂PRX. We prove that if Cp(X) embeds in a σ-compact space of countable tightness then X is countable. This shows that it is natural to study when Cp(X) has a frame of countable tightness with some compactness-like property. We prove, among other things, that if X is compact and the space Cp(X) has a Lindelöf frame of countable tightness then t(X)?ω. We give some generalizations of this result for the case of frames as well as for embeddings of Cp(X) in arbitrary spaces.  相似文献   

11.
Let Cp(X) be the space of all continuous real-valued functions on a space X, with the topology of pointwise convergence. In this paper we show that Cp(X) is not domain representable unless X is discrete for a class of spaces that includes all pseudo-radial spaces and all generalized ordered spaces. This is a first step toward our conjecture that if X is completely regular, then Cp(X) is domain representable if and only if X is discrete. In addition, we show that if X is completely regular and pseudonormal, then in the function space Cp(X), Oxtoby's pseudocompleteness, strong Choquet completeness, and weak Choquet completeness are all equivalent to the statement “every countable subset of X is closed”.  相似文献   

12.
Let X be a locally compact Polish space and G a non-discrete Polish ANR group. By C(X,G), we denote the topological group of all continuous maps endowed with the Whitney (graph) topology and by Cc(X,G) the subgroup consisting of all maps with compact support. It is known that if X is compact and non-discrete then the space C(X,G) is an l2-manifold. In this article we show that if X is non-compact and not end-discrete then Cc(X,G) is an (R×l2)-manifold, and moreover the pair (C(X,G),Cc(X,G)) is locally homeomorphic to the pair of the box and the small box powers of l2.  相似文献   

13.
It is known (see, for example, [H. Render, Nonstandard topology on function spaces with applications to hyperspaces, Trans. Amer. Math. Soc. 336 (1) (1993) 101-119; M. Escardo, J. Lawson, A. Simpson, Comparing cartesian closed categories of (core) compactly generated spaces, Topology Appl. 143 (2004) 105-145; D.N. Georgiou, S.D. Iliadis, F. Mynard, Function space topologies, in: Open Problems in Topology 2, Elsevier, 2007, pp. 15-23]) that the intersection of all admissible topologies on the set C(Y,Z) of all continuous maps of an arbitrary space Y into an arbitrary space Z, is always the greatest splitting topology (which in general is not admissible). The following, interesting in our opinion, problem is arised: when a given splitting topology (for example, the compact-open topology, the Isbell topology, and the greatest splitting topology) is the intersection of k admissible topologies, where k is a finite number. Of course, in this case this splitting topology will be the greatest splitting.In the case, where a given splitting topology is admissible the above number k is equal to one. For example, if Y is a locally compact Hausdorff space, then k=1 for the compact-open topology (see [R.H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945) 429-432; R. Arens, A topology for spaces of transformations, Ann. of Math. 47 (1946) 480-495; R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31]). Also, if Y is a corecompact space, then k=1 for the Isbell topology (see [P. Lambrinos, B.K. Papadopoulos, The (strong) Isbell topology and (weakly) continuous lattices, in: Continuous Lattices and Applications, in: Lect. Notes Pure Appl. Math., vol. 101, Marcel Dekker, New York, 1984, pp. 191-211; F. Schwarz, S. Weck, Scott topology, Isbell topology, and continuous convergence, in: Lect. Notes Pure Appl. Math., vol. 101, Marcel Dekker, New York, 1984, pp. 251-271]).In [R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31] a non-locally compact completely regular space Y is constructed such that the compact-open topology on C(Y,S), where S is the Sierpinski space, coincides with the greatest splitting topology (which is not admissible). This fact is proved by the construction of two admissible topologies on C(Y,S) whose intersection is the compact-open topology, that is k=2.In the present paper improving the method of [R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31] we construct some other non-locally compact spaces Y such that the compact-open topology on C(Y,S) is the intersection of two admissible topologies. Also, we give some concrete problems concerning the above arised general problem.  相似文献   

14.
This study looks at some subgroups of the group H(C(X)) of homeomorphisms on the space C(X) of continuous real-valued functions on a topological space X, where C(X) has the compact-open topology. The main result shows that, for certain spaces X, the subgroup of H(C(X)) generated by the algebraic and vertical homeomorphisms on C(X) is dense in H(C(X)) with the pointwise topology. Also, for X equal to the unit interval, a subgroup of H(C(X)) is developed using integration of the members of C(X), and this subgroup is used as an example and to illustrate certain properties that subgroups of H(C(X)) can have.  相似文献   

15.
It is well known that the space Cp([0,1]) has countable tightness but it is not Fréchet-Urysohn. Let X be a Cech-complete topological space. We prove that the space Cp(X) of continuous real-valued functions on X endowed with the pointwise topology is Fréchet-Urysohn if and only if Cp(X) has countable bounded tightness, i.e., for every subset A of Cp(X) and every x in the closure of A in Cp(X) there exists a countable and bounding subset of A whose closure contains x. We study also the problem when the weak topology of a locally convex space has countable bounded tightness. Additional results in this direction are provided.  相似文献   

16.
Let X be a Tychonoff space, C(X) be the space of all continuous real-valued functions defined on X and CL(X×R) be the hyperspace of all nonempty closed subsets of X×R. We prove the following result. Let X be a countably paracompact normal space. The following are equivalent: (a) dimX=0; (b) the closure of C(X) in CL(X×R) with the Vietoris topology consists of all FCL(X×R) such that F(x)≠∅ for every xX and F maps isolated points into singletons; (c) each usco map which maps isolated points into singletons can be approximated by continuous functions in CL(X×R) with the locally finite topology. From the mentioned result we can also obtain the answer to Problem 5.5 in [L'. Holá, R.A. McCoy, Relations approximated by continuous functions, Proc. Amer. Math. Soc. 133 (2005) 2173-2182] and to Question 5.5 in [R.A. McCoy, Comparison of hyperspace and function space topologies, Quad. Mat. 3 (1998) 243-258] in the realm of normal, countably paracompact, strongly zero-dimensional spaces. Generalizations of some results from [L'. Holá, R.A. McCoy, Relations approximated by continuous functions, Proc. Amer. Math. Soc. 133 (2005) 2173-2182] are also given.  相似文献   

17.
Let C(X,G) be the group of continuous functions from a topological space X into a topological group G with pointwise multiplication as the composition law, endowed with the uniform convergence topology. To what extent does the group structure of C(X,G) determine the topology of X? More generally, when does the existence of a group homomorphism H between the groups C(X,G) and C(Y,G) implies that there is a continuous map h of Y into X such that H is canonically represented by h? We prove that, for any topological group G and compact spaces X and Y, every non-vanishing C-isomorphism (defined below) H of C(X,G) into C(Y,G) is automatically continuous and can be canonically represented by a continuous map h of Y into X. Some applications to specific groups and examples are given in the paper.  相似文献   

18.
The recent literature offers examples, specific and hand-crafted, of Tychonoff spaces (in ZFC) which respond negatively to these questions, due respectively to Ceder and Pearson (1967) [3] and to Comfort and García-Ferreira (2001) [5]: (1) Is every ω-resolvable space maximally resolvable? (2) Is every maximally resolvable space extraresolvable? Now using the method of KID expansion, the authors show that every suitably restricted Tychonoff topological space (X,T) admits a larger Tychonoff topology (that is, an “expansion”) witnessing such failure. Specifically the authors show in ZFC that if (X,T) is a maximally resolvable Tychonoff space with S(X,T)?Δ(X,T)=κ, then (X,T) has Tychonoff expansions U=Ui (1?i?5), with Δ(X,Ui)=Δ(X,T) and S(X,Ui)?Δ(X,Ui), such that (X,Ui) is: (i=1) ω-resolvable but not maximally resolvable; (i=2) [if κ is regular, with S(X,T)?κ?κ] τ-resolvable for all τ<κ, but not κ-resolvable; (i=3) maximally resolvable, but not extraresolvable; (i=4) extraresolvable, but not maximally resolvable; (i=5) maximally resolvable and extraresolvable, but not strongly extraresolvable.  相似文献   

19.
This paper studies the compact-open topology on the set KC(X) of all real-valued functions defined on a Tychonoff space, which are continuous on compact subsets of X. In addition to metrizability, separability and second countability of this topology on KC(X), various kinds of topological properties of this topology are studied in detail. Actually the motivation for studying the compact-open topology on KC(X) lies in the attempt of having a simpler proof for the characterization of a completeness property of the compact-open topology on C(X), the set of all real-valued continuous functions on X.  相似文献   

20.
For a Tychonoff space X, we denote by Cλ(X) the space of all real-valued continuous functions on X with set-open topology. In this paper, we study the topological-algebraic properties of Cλ(X). Our main results state that (1) Cλ(X) is a topological vector space (a topological group) iff λ is a family of C-compact sets and Cλ(X)=Cλ(X), where λ consists of all C-compact subsets of every set of λ. In particular, if Cλ(X) is a topological group, then the set-open topology coincides with the topology of uniform convergence on a family λ; (2) a topological group Cλ(X) is ω-narrow iff λ is a family of metrizable compact subsets of X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号